Results 261 to 270 of about 295,427 (360)

Study of Resistive Switching Dynamics and Memory States Equilibria in Analog Filamentary Conductive‐Metal‐Oxide/HfOx ReRAM via Compact Modeling

open access: yesAdvanced Electronic Materials, EarlyView.
A physics‐based compact model for Conductive‐Metal‐Oxide/HfOx ReRAM, accounting for ion dynamics, electronic conduction, and thermal effects, is presented. Accurate and versatile simulations of analog non‐volatile conductance modulation and memory state stabilization enable reliable circuit‐level studies, advancing the optimization of neuromorphic and ...
Matteo Galetta   +9 more
wiley   +1 more source

Integrating Automated Electrochemistry and High‐Throughput Characterization with Machine Learning to Explore Si─Ge─Sn Thin‐Film Lithium Battery Anodes

open access: yesAdvanced Energy Materials, Volume 15, Issue 11, March 18, 2025.
A closed‐loop, data‐driven approach facilitates the exploration of high‐performance Si─Ge─Sn alloys as promising fast‐charging battery anodes. Autonomous electrochemical experimentation using a scanning droplet cell is combined with real‐time optimization to efficiently navigate composition space.
Alexey Sanin   +7 more
wiley   +1 more source

Aqueous Zinc‐Based Batteries: Active Materials, Device Design, and Future Perspectives

open access: yesAdvanced Energy Materials, EarlyView.
This review conducts a comprehensive analysis of aqueous zinc‐based batteries (AZBs) based on their intrinsic mechanisms, including redox reactions, ion intercalation reactions, alloying reactions, electrochemical double‐layer reactions, and mixed mechanisms, systematically discussing recent advancements in each type of AZBs.
Yan Ran, Fang Dong, Shuhui Sun, Yong Lei
wiley   +1 more source

MRCP PACES Manual

open access: green, 2015
Louise Pealing   +3 more
openalex   +1 more source

How Halide Segregation Governs the Ion Density Evolution and Ionic Performance Losses: From Degradation to Recovery

open access: yesAdvanced Energy Materials, EarlyView.
Halide segregation (HS) in mixed‐halide wide‐bandgap (WBG) perovskites is key to the stability of perovskite‐based tandem cells and a central focus of large‐scale research efforts. Here, we find that the underlying reason for the poor stability of cells prone to HS is enhanced ionic losses during operation. Furthermore, we identified irreversible ionic
Nikhil Kalasariya   +24 more
wiley   +1 more source

Home - About - Disclaimer - Privacy