Results 141 to 150 of about 811,679 (283)

Artificial Intelligence‐Driven Insights into Electrospinning: Machine Learning Models to Predict Cotton‐Wool‐Like Structure of Electrospun Fibers

open access: yesAdvanced Intelligent Discovery, EarlyView.
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia   +3 more
wiley   +1 more source

Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley   +1 more source

Direct and maternal effects on calving ease in heifers and second parity Piemontese cows [PDF]

open access: green, 1998
Paolo Carnier   +3 more
openalex  

Excited Baryons and Chiral Symmetry Breaking of QCD

open access: yes, 2002
N* masses in the spin-1/2 and spin-3/2 sectors are computed using two non-perturbative methods: lattice QCD and QCD sum rules. States with both positive and negative parity are isolated via parity projection methods.
Lee, Frank X.
core   +2 more sources

A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley   +1 more source

Factorization Machine‐Based Active Learning for Functional Materials Design with Optimal Initial Data

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work investigates the optimal initial data size for surrogate‐based active learning in functional material optimization. Using factorization machine (FM)‐based quadratic unconstrained binary optimization (QUBO) surrogates and averaged piecewise linear regression, we show that adequate initial data accelerates convergence, enhances efficiency, and ...
Seongmin Kim, In‐Saeng Suh
wiley   +1 more source

Accelerating Biosensor Discovery: A Computationally‐Driven Pipeline for Microplastics Monitoring

open access: yesAdvanced Intelligent Discovery, EarlyView.
A computationally guided pipeline unites molecular simulation, synthetic biology, electrochemical engineering, and machine learning to accelerate biosensor discovery. A Bacillus anthracis carbohydrate‐binding module is used to develop a high‐performance micro‐ and nanoplastics sensor with greatly reduced error and variability.
Gabriel X. Pereira   +13 more
wiley   +1 more source

Mixed vulnerabilities: the biological risk of high parity is aggravated by emergency referral in Benin, Malawi, Tanzania and Uganda [PDF]

open access: gold
Manuela Straneo   +9 more
openalex   +1 more source

Home - About - Disclaimer - Privacy