Results 131 to 140 of about 188,828 (316)

Testing non-standard sources of parity violation in jets at the LHC, trialled with CMS Open Data

open access: yesJournal of High Energy Physics, 2019
The Standard Model violates parity, but only by mechanisms which are invisible to Large Hadron Collider (LHC) experiments (on account of the lack of initial state polarisation or spin-sensitivity in the detectors).
Christopher G. Lester, Matthias Schott
doaj   +1 more source

Accelerated Screening of Halide Double Perovskites via Hybrid Density Functional Theory and Machine Learning for Thermoelectric Energy Conversion

open access: yesAdvanced Energy and Sustainability Research, EarlyView.
This study integrates hybrid density functional theory, Boltzmann transport theory, and machine learning to accelerate the discovery of lead‐free halide double perovskites for thermoelectric energy conversion. By screening 102 compounds, the authors identify high‐performing candidates such as Rb2GeI6 and Cs2SnBr6, offering a sustainable pathway toward ...
Souraya Goumri‐Said   +2 more
wiley   +1 more source

Exploring Quantum Support Vector Regression for Predicting Hydrogen Storage Capacity of Nanoporous Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
In this study we employed support vector regressor and quantum support vector regressor to predict the hydrogen storage capacity of metal–organic frameworks using structural and physicochemical descriptors. This study presents a comparative analysis of classical support vector regression (SVR) and quantum support vector regression (QSVR) in predicting ...
Chandra Chowdhury
wiley   +1 more source

Flexible Memory: Progress, Challenges, and Opportunities

open access: yesAdvanced Intelligent Discovery, EarlyView.
Flexible memory technology is crucial for flexible electronics integration. This review covers its historical evolution, evaluates rigid systems, proposes a flexible memory framework based on multiple mechanisms, stresses material design's role, presents a coupling model for performance optimization, and points out future directions.
Ruizhi Yuan   +5 more
wiley   +1 more source

Artificial Intelligence‐Driven Insights into Electrospinning: Machine Learning Models to Predict Cotton‐Wool‐Like Structure of Electrospun Fibers

open access: yesAdvanced Intelligent Discovery, EarlyView.
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia   +3 more
wiley   +1 more source

Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley   +1 more source

Parity determination in particle physics

open access: yesPhysics Letters, 1965
P.L. Csonka   +2 more
openaire   +3 more sources

Dynamics and gravitational radiation of binaries with spin precession and eccentricity in dynamical Chern-Simons gravity

open access: yesJournal of High Energy Physics
Testing parity symmetry constitutes a critical aspect in gravitational physics. As a representative parity-violating theory, dynamical Chern-Simons (dCS) gravity has attracted significant attention in recent gravitational wave (GW) studies.
Zhao Li, Wen Zhao
doaj   +1 more source

A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley   +1 more source

Home - About - Disclaimer - Privacy