Results 91 to 100 of about 25,577 (241)

Ladder‐Type Benzene‐Perylene Dyes with Efficient Laser Properties in the Near‐IR by Detracting/Activating Low/High Frequency Vibronic Modes

open access: yesAdvanced Functional Materials, EarlyView.
The NNR‐n series of oligomeric nanographenes delivers exceptional emission performance. This work shows that this performance is originated by their ladder‐type structure, which effectively deactivates low‐frequency vibronic modes. This deactivation neglects the main pathway for non‐emissive deactivation, even in the near‐infrared region. The potential
Marcos Díaz‐Fernández   +12 more
wiley   +1 more source

Analysis of single-cell shading impact on polycrystalline PERC module under hot-dry conditions

open access: yesEnergy Conversion and Management: X
PV technologies may often perform differently under outdoor operating conditions compared with Standard Test Conditions, which are performed under a controlled setup inside a laboratory.
Neha Kumari   +3 more
doaj   +1 more source

An Efficient MPPT Algorithm for Partially Shaded PV Strings

open access: yes, 2015
Under partial shading conditions, several power peaks (maximum power points - MPPs) are presented on the P-V curve of a photovoltaic system, hindering the effectiveness of typical maximum power point tracking (MPPT) algorithms, due to possible convergence to a local suboptimal MPP. In this paper, a global MPPT (GMPPT) method for PV strings is proposed,
Batzelis, Efstratios   +1 more
openaire   +2 more sources

Printed Integrated Logic Circuits Based on Chitosan‐Gated Organic Transistors for Future Edible Systems

open access: yesAdvanced Functional Materials, EarlyView.
Edible electronics needs integrated logic circuits for computation and control. This work presents a potentially edible printed chitosan‐gated transistor with a design optimized for integration in circuits. Its implementation in integrated logic gates and circuits operating at low voltage (0.7 V) is demonstrated, as well as the compatibility with an ...
Giulia Coco   +8 more
wiley   +1 more source

Low‐Symmetry Weyl Semimetals: A Path to Ideal Topological States

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a theoretical framework for realizing ideal Weyl semimetals, where Weyl nodes are well‐isolated at the Fermi level. The approach is exemplified in the low‐symmetry material Cu2SnSe3, which exhibits tunable topological phases, current‐induced orbital magnetization, and a strong circular photogalvanic effect, making it a promising ...
Darius‐Alexandru Deaconu   +3 more
wiley   +1 more source

Demonstration of an All‐Optical AND Gate Mediated by Photochromic Molecules

open access: yesAdvanced Functional Materials, EarlyView.
A logic AND gate that runs on photons is demonstrated. It relies on two spatially separated photochromic molecules that work in tandem. Abstract The realization of a photonic logic AND gate, i.e. a logic AND gate that runs on photons rather than electrons, and where all steps are controlled by light, is demonstrated. In a proof‐of‐principle experiment,
Heyou Zhang   +7 more
wiley   +1 more source

Laser‐Induced Graphene from Waste Almond Shells

open access: yesAdvanced Functional Materials, EarlyView.
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova   +9 more
wiley   +1 more source

Advanced Flame Retardant Strategies and Fire Performance Assessment for Safer Photovoltaics in Buildings: A Two‐Part Review

open access: yesAdvanced Functional Materials, EarlyView.
The integration of photovoltaic (PV) systems into building structures introduces distinct fire risks with critical implications for occupant safety. This review examines the key fire hazards associated with PV implementation and explores mitigation strategies, including flame‐retardant additives.
Florian Ollagnon   +7 more
wiley   +1 more source

Mechanical Properties of Architected Polymer Lattice Materials: A Comparative Study of Additive Manufacturing and CAD Using FEM and µ‐CT

open access: yesAdvanced Functional Materials, EarlyView.
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy