Results 61 to 70 of about 232,390 (250)
Laser‐Induced Graphene from Waste Almond Shells
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova +9 more
wiley +1 more source
Controlled syntheses of lanthanide coordination polymers based on the dihydroxybenzoquinone (DHBQ) organic linker afforded large single crystals of Ln‐DHBQ CPs (Ln = Yb, Nd). A novel structural variant of Yb‐DHBQ is identified by means of single crystal diffraction analysis.
Marina I. Schönherr +7 more
wiley +1 more source
Comparison of multiphase SPH and LBM approaches for the simulation of intermittent flows
Smoothed Particle Hydrodynamics (SPH) and Lattice Boltzmann Method (LBM) are increasingly popular and attractive methods that propose efficient multiphase formulations, each one with its own strengths and weaknesses.
Bertrand, François +4 more
core +3 more sources
Defect Analysis of the β– to γ–Ga2O3 Phase Transition
The role of defects at all the relevant stages of the β$\beta$‐ to γ$\gamma$‐Ga2O3 polymorph transition is investigated using a multi method approach. The positron annihilation spectroscopy based results show that the defect density decreases after the transition, and that changes in defect configuration within the γ phase occur with increasing ...
Umutcan Bektas +9 more
wiley +1 more source
On triangular lattice Boltzmann schemes for scalar problems
We propose to extend the d'Humi\'eres version of the lattice Boltzmann scheme to triangular meshes. We use Bravais lattices or more general lattices with the property that the degree of each internal vertex is supposed to be constant.
Dubois, François, Lallemand, Pierre
core +3 more sources
Thermal transport in Ru and W thin films is studied using steady‐state thermoreflectance, ultrafast pump–probe spectroscopy, infrared‐visible spectroscopy, and computations. Significant Lorenz number deviations reveal strong phonon contributions, reaching 45% in Ru and 62% in W.
Md. Rafiqul Islam +14 more
wiley +1 more source
Recent developments in Quantum Monte-Carlo simulations with applications for cold gases
This is a review of recent developments in Monte Carlo methods in the field of ultra cold gases. For bosonic atoms in an optical lattice we discuss path integral Monte Carlo simulations with worm updates and show the excellent agreement with cold atom ...
Pollet, Lode
core +1 more source
Exploring the photocatalytic reverse water–gas shift (RWGS) reaction on doped SrTiO3 nanoparticle films, reveals that normalizing catalytic rates by the catalyst's specific surface area (SSA) disentangled surface area effects from the catalyst's intrinsic material properties.
Dikshita Bhattacharyya +6 more
wiley +1 more source
Monte Carlo simulation of a two-dimensional continuum Coulomb gas
We study the classical two-dimensional Coulomb gas model for thermal vortex fluctuations in thin superconducting/superfluid films by Monte Carlo simulation of a grand canonical vortex ensemble defined on a continuum. The Kosterlitz-Thouless transition is
%V. L. Berezinskii +47 more
core +1 more source
Band Alignment in In‐Oxo Metal Porphyrin SURMOF Heterojunctions
Porphyrin core metalation in indium‑oxo SURMOFs enables systematic tuning of band edge positions without altering the crystal structure. First‑principles calculations reveal type‑I and type‑II heterostructures as well as multi‑junction energy cascades, establishing a modular strategy for exciton funneling and charge separation in optoelectronic ...
Puja Singhvi, Nina Vankova, Thomas Heine
wiley +1 more source

