Results 121 to 130 of about 1,139,677 (338)

Enhanced Oxidation and Thermal Shock Resistance of N‐type Mg2Si0.89(Sn0.1,Sb0.01) Thermoelectric Material via Cr0.9Si0.1 Coating

open access: yesAdvanced Engineering Materials, EarlyView.
Cr0.9Si0.1 protective coatings are developed to enhance the thermal‐shock and oxidation resistance of Mg2Si0.89(Sn0.1,Sb0.01) thermoelectric (TE) materials. The coating forms a dense and adherent barrier that suppresses oxygen diffusion and mitigates mechanical degradation during cyclic oxidation, demonstrating its potential to improve the long‐term ...
Mikdat Gurtaran   +3 more
wiley   +1 more source

Path Dependence in Aggregate Output [PDF]

open access: yes
This paper studies an economy in which incomplete markets and strong complementarities interact to generate path dependent aggregate output fluctuations.
Steven N. Durlauf
core  

Microstructural Evolution and Mechanical Performance of Plasma‐Assisted Hybrid Friction Stir Welded Dissimilar Aluminum–Copper Joints

open access: yesAdvanced Engineering Materials, EarlyView.
Plasma‐assisted hybrid friction stir welding of dissimilar AlCu joints employs localized plasma preheating to balance heat input and enhance plastic flow. The optimized process reduces axial force by up to 35%, refines the microstructure, and achieves ≈96% joint efficiency.
Deepak Kumar Yaduwanshi   +3 more
wiley   +1 more source

Structural Estimation of Gravity Models with Path-Dependent Market Entry [PDF]

open access: yes
This paper develops a structural empirical general equilibrium model of aggregate bilateral trade with path dependence of country-pair level exporter status. Such path dependence is motivated through informational costs about serving a foreign market for
Michael Pfaffermayr, Peter Egger
core  

Fabrication of Multifunctional FeSi Gyroid Lattice Composites via Additive Manufacturing and Polymer Infiltration

open access: yesAdvanced Engineering Materials, EarlyView.
A two‐step approach combining laser powder bed fusion of FeSi electrical steel with Bakelite infiltration enables the fabrication of multifunctional gyroid lattice composites. The resulting structures exhibit high strength, magnetic anisotropy, and complete polymer infiltration, demonstrating a simple and scalable route toward lightweight, mechanically
Angelo F. Andreoli   +9 more
wiley   +1 more source

Influence of Sample Preparation and Processing Procedures on the Thermal Diffusivity of MgO‐C Refractories

open access: yesAdvanced Engineering Materials, EarlyView.
The thermal diffusivity of MgO‐C refractories is highly sensitive to sample preparation and processing procedures. In this article, the effects of coking sequence, machining conditions, structural inhomogeneity, and graphite coating application on measurements using laser flash apparatus are systematically investigated.
Luyao Pan   +4 more
wiley   +1 more source

Four‐Point Bending Tests at High Temperatures on Commercial MgO‐C Refractory Bricks with and Without Recyclate Considering Different Carbon Contents

open access: yesAdvanced Engineering Materials, EarlyView.
Four‐point bending tests are conducted in an argon atmosphere on commercial MgO‐C brick grades with and without MgO‐C recyclate from room temperature up to 1300 °C. No detrimental effect of the MgO‐C recyclates on bending strength is found. Instead, a decisive influence of the total carbon content is observed, with lower total carbon contents ...
Alexander Schramm   +5 more
wiley   +1 more source

Diffusion of Monochromatic Classical Waves

open access: yes, 2005
We study the diffusion of monochromatic classical waves in a disordered acoustic medium by scattering theory. In order to avoid artifacts associated with mathematical point scatterers, we model the randomness by small but finite insertions.
Bauer, Gerrit E. W., Gerritsen, Sijmen
core   +1 more source

Engineering Deformation and Failure in Diamond Triply Periodic Minimal Surface Lattices via 3D Wall‐Thickness Grading

open access: yesAdvanced Engineering Materials, EarlyView.
The work demonstrates that strategic wall‐thickness grading in diamond triply periodic minimal surface lattices enables precise tuning of deformation and failure behavior under compression. Different gradation patterns guide how and where the structure collapses, improving energy absorption or promoting controlled brittle failure.
Giovanni Rizza   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy