Results 201 to 210 of about 2,567,654 (339)

Broadband, Flexible, Skin‐Compatible Carbon Dots/Graphene Photodetectors for Wearable Applications

open access: yesAdvanced Functional Materials, EarlyView.
Broadband, flexible photodetectors integrating nitrogen‐rich carbon dots with single‐layer graphene on plastic substrates are demonstrated. A biocompatible chitosan–glycerol electrolyte enables efficient low‐voltage gating and on‐skin operation. The devices exhibit ultraviolet‐to‐near‐infrared response, mechanical robustness under bending, and verified
Nouha Loudhaief   +20 more
wiley   +1 more source

Multistackable, Domino‐Overlapped CNT Scaffolds Homogeneously Hybridized with BTO‐P(VDF‐TrFE) for High‐Performance Piezoelectric Nanogenerators

open access: yesAdvanced Functional Materials, EarlyView.
A multilayer‐stackable carbon nanotuber (CNT) scaffold‐based piezoelectric nanogenerator (CPENG) with domino‐patterned CNT pillars presents high, stable output (12.3 V, size of 1 cm × 1 cm) over 2000 cycles, operates across a wide temperature range, and efficiently converts energy from real‐life stimuli through optimized CNT length, layer stacking, and
Kwangjun Kim   +3 more
wiley   +1 more source

Predicting Atomic Charges in MOFs by Topological Charge Equilibration

open access: yesAdvanced Functional Materials, EarlyView.
An atomic charge prediction method is presented that is able to accurately reproduce ab‐initio‐derived reference charges for a large number of metal–organic frameworks. Based on a topological charge equilibration scheme, static charges that fulfill overall neutrality are quickly generated.
Babak Farhadi Jahromi   +2 more
wiley   +1 more source

Encoding Magnetic Anisotropies in Digital Light Processing 3D Printing

open access: yesAdvanced Functional Materials, EarlyView.
A hybrid magnetic device—combining a coaxial coil within a nested Halbach array—is presented, integrated into a DLP 3D printer to enable spatially resolved magnetic field control. This system enables complex, multimodal responses by programming liquid crystal elastomer resins for magnetic and thermal actuation, and by inducing electrically conductive ...
Eléonore Aïdonidis   +11 more
wiley   +1 more source

Rational Design of Printable Carbon Nanotube Transparent Conductive Films via Data‐Driven and Mechanistic Insights

open access: yesAdvanced Functional Materials, EarlyView.
A machine learning and simulation‐guided strategy is demonstrated for gentle, non‐sonication dispersion of carbon nanotubes, preserving structural integrity and performance. This approach enables transparent conductive films with low sheet resistance, high transmittance, and sub‐20 µm printability.
Ying Zhou   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy