Results 221 to 230 of about 896,372 (322)

Polyhalogenated Carbazole Impairs Dopaminergic Neurons through Dysregulation of Liquid–Liquid Phase Separation in Caenorhabditis elegans

open access: yesAdvanced Science, EarlyView.
Polyhalogenated carbazoles (PHCZ), persistent environmental contaminants, preferentially accumulate in neuronal tissues. Studies using Caenorhabditis elegans and human neuronal cell lines reveal that PHCZ induce dopaminergic neurodegeneration by promoting liquid–liquid phase separation of α‐synuclein, reducing condensate fluidity, impairing ...
Yuhang Luo   +13 more
wiley   +1 more source

Switching PCA for modeling changes in the underlying structure of multivariate time series data [PDF]

open access: green, 2011
Kim De Roover   +3 more
openalex  

NNMT Orchestrates Metabolic‐Epigenetic Reprogramming to Drive Macrophage‐Myofibroblast Transition in Hypertrophic Scarring

open access: yesAdvanced Science, EarlyView.
In macrophage‐myofibroblast transition, upregulated NNMT depletes S‐Adenosylmethionine‌ (SAM) and nicotinamide adenine dinucleotide(NAD+), thereby triggering epigenetic reprogramming via Histone H3 Lysine 27 acetylation (H3K27ac) accumulation at the promoter region of master transcription factor Prrx1.
Xiwen Dong   +11 more
wiley   +1 more source

PHR‐Mediated Pi Starvation Response Mobile Messenger RNAs Represent Noncoding Transcripts in Recipient Tissues

open access: yesAdvanced Science, EarlyView.
Mobile messenger RNAs (mRNAs) can travel long distances, serving as systemic signals that participate in plant growth and stress acclimation. This work determines that PHR proteins mediate the Pi starvation response (PSR)‐specific long‐distance transport of mRNAs and that these PSR‐specific mobile mRNAs represent noncoding transcripts in recipient ...
Weiguo Dong   +9 more
wiley   +1 more source

Potentiating Cerebral Perfusion Normalizes Glymphatic Dynamics in Systemic Inflammation

open access: yesAdvanced Science, EarlyView.
LPS‐induced systemic inflammation increases glymphatic influx but delays cervical lymphatic drainage, accompanied by AQP4 depolarization and impaired glymphatic clearance. Enhancing cerebral blood flow via the inotropic agent levosimendan effectively restored AQP4 polarization, improving glymphatic flux and amyloid‐β clearance.
Ruoyu Zhao   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy