Results 251 to 260 of about 297,594 (318)

Low‐Temperature Exsolution of Cobalt From Perovskite Nanoparticles via Bead Milling for Enhanced Electrocatalytic Oxygen Evolution Reaction

open access: yesAdvanced Functional Materials, EarlyView.
High‐temperature requirements and complex synthesis limit the practical use of perovskite‐based metal exsolution catalysts. This study addresses these limitations by employing bead milling, enabling efficient metal exsolution at a significantly lower temperature (300 °C) from La0.6Sr0.4CoO3‐δ nanoparticles. Consequently, the catalytic mass activity for
Sang‐Mun Jung   +10 more
wiley   +1 more source

Accelerated Kinetics of Desolvation and Redox Transformation Enabled by MOF Sieving for High‐Loading Mg‐S Battery

open access: yesAdvanced Functional Materials, EarlyView.
A strategy of sieving catalysis based on the MIL‐101(Cr) with multistage pore structure and Lewis acid sites has been proposed as the catalyst to accelerate the kinetics of desolvation and redox conversion of sulfur species, achieving high performance Mg‐S batteries.
Qinghua Guan   +8 more
wiley   +1 more source

Thiol‐Modulation‐Induced Mesoporous Nanosheets with an Alloy/Intermetallic Heterophase for Efficient Electrochemical Ethylene Glycol‐Assisted Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
Sulfur‐capped mesoporous PtPbBi nanosheets (S‐PtPbBi MNSs) with an alloy/intermetallic compound heterophase and inhomogeneous tensile strain (≈3%) were synthesized by a thiol modification strategy, which exhibited excellent electrocatalytic performance for ethylene glycol oxidation reaction (EGOR).
Fukai Feng   +14 more
wiley   +1 more source

Biodegradable and Recyclable Luminescent Mixed‐Matrix‐Membranes, Hydrogels, and Cryogels based on Nanoscale Metal‐Organic Frameworks and Biopolymers

open access: yesAdvanced Functional Materials, EarlyView.
The study presents biodegradable and recyclable mixed‐matrix membranes (MMMs), hydrogels, and cryogels using luminescent nanoscale metal‐organic frameworks (nMOFs) and biopolymers. These bio‐nMOF‐MMMs combine europium‐based nMOFs as probes for the status of the materials with the biopolymers agar and gelatine and present alternatives to conventional ...
Moritz Maxeiner   +4 more
wiley   +1 more source

Functional Hydrogel for Modulating Lipid Droplets and Neuroinflammation in Head Injury

open access: yesAdvanced Functional Materials, EarlyView.
After TBI, elevated cholesterol levels in activated microglia lead to the accumulation of cholesterol esters in lipid droplets, exacerbating neuroinflammation. A β‐cyclodextrin‐conjugated GelMA (βCD‐GelMA) hydrogel is developed to promotes cholesterol efflux and reduces LDL influx, thereby alleviating intracellular cholesterol and lipid droplet buildup.
Feixiang Chen   +9 more
wiley   +1 more source

Multifunctional Polyfluoride Ionogel‐Encapsulated Lithium Anodes for Durable and Safe Pouch Cells under Harsh Conditions

open access: yesAdvanced Functional Materials, EarlyView.
In this work, it is developed a multifunctional polyfluoride ionogel via in situ thermal polymerization to encapsulate lithium metal anodes, integrating flame‐retardant capability, hydrophobicity, dynamic self‐healing behavior, and high ionic conductivity.
Ting Li   +10 more
wiley   +1 more source
Some of the next articles are maybe not open access.

Related searches:

Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California

Earthquake Spectra, 1999
We have developed regression relationships between Modified Mercalli Intensity ( Imm) and peak ground acceleration (PGA) and velocity (PGV) by comparing horizontal peak ground motions to observed intensities for eight significant California earthquakes.
Wald, David J.   +3 more
openaire   +4 more sources

Global Attenuation Relationship for Estimating Peak Ground Acceleration

Journal of the Geological Society of India, 2018
Abstract Peak Ground Acceleration (PGA) is a very important ground motion parameter which is used to define the degree of ground shaking during an earthquake. It is also very helpful for designing earthquake resistant structure. The PGA can be estimated by attenuation relationships using magnitude, distance, source type etc of a ground ...
Amit Shiuly
openaire   +3 more sources

Prediction of Peak ground acceleration for earthquakes by using intelligent methods

2017 5th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), 2017
Peak ground acceleration (PGA) is equal to the maximum ground acceleration that occurred during earthquake shaking at a location and the design basis earthquake ground motion is often defined in terms of PGA. In this paper, three intelligent methods are proposed for predicting of PGA in regions where PGA value is greater than 0.5g. These knowledge base
Marzieh Ahmadi   +2 more
openaire   +3 more sources

Are peak ground reaction forces related to better sprint acceleration performance?

Sports Biomechanics, 2019
This study aimed to elucidate whether the peak (maximum) ground reaction force (GRF) can be used as an indicator of better sprint acceleration performance. Eighteen male sprinters performed 60-m maximal effort sprints, during which GRF for a 50-m distance was collected using a long force platform system.
Ryu Nagahara   +3 more
openaire   +4 more sources

Home - About - Disclaimer - Privacy