Results 161 to 170 of about 225,447 (329)

Eco‐Fabricated Nanowave‐Textured Implants Drive Microtubule‐Assisted Nuclear Mechanotransduction and Chromatin Modification: Biophysical Priming for Osteogenesis and Bone Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
Eco‐friendly nanowave‐textured implants produced via femtosecond laser fabrication enhance bone regeneration by orchestrating a precise mechanotransduction cascade. This nanotopography directs mesenchymal stem cell alignment and cytoskeletal organization, triggering changes in nuclear shape and chromatin acetylation that prime cells for osteogenesis ...
Bosu Jeong   +15 more
wiley   +1 more source

Machine Learning Guided Design of Nerve‐On‐A‐Chip Platforms with Promoted Neurite Outgrowth

open access: yesAdvanced Functional Materials, EarlyView.
Compared to labor‐intensive trial‐and‐error experimentation, a machine learning (ML)‐guided workflow, incorporating cell viability assays, data augmentation, ensemble modeling, and model interpretation, is developed to accelerate nerve‐on‐a‐chip optimization and uncover data‐driven design principles.
Tsai‐Chun Chung   +8 more
wiley   +1 more source

Engineering Topographical Cues to Enhance Neural Regeneration in Spinal Cord Injury: Overcoming Challenges and Advancing Therapies

open access: yesAdvanced Functional Materials, EarlyView.
Spinal cord injury (SCI) poses significant challenges for regeneration due to a series of secondary injury mechanisms. How to use biomaterial approach to target the failed regeneration after SCI remains a critical challenge. This review systematically evaluates current strategies to optimize biomaterial topographies for neurite outgrowth, axonal ...
Wei Xu   +7 more
wiley   +1 more source

3D‐Printed Scaffolds Promote Enhanced Spinal Organoid Formation for Use in Spinal Cord Injury

open access: yesAdvanced Healthcare Materials, EarlyView.
3D‐printed organoid scaffolds with microscale channels are developed to enhance spinal cord injury recovery by guiding region‐specific spinal neural progenitor cells. These scaffolds promote axonal growth, cell maturation, and neuronal network formation.
Guebum Han   +8 more
wiley   +1 more source

Fluid Shear‐Controlled Pro/Anti‐Inflammatory Osteomodulatory Construct for Drug‐Free Immune Activation Through Cationic Ion Channel Activation

open access: yesAdvanced Healthcare Materials, EarlyView.
A 3D‐printed PCL scaffold coated with Arginine was laminated with electrospun polyvinyl alcohol (PVA) nanofibers containing cationic cellulose nanocrystals (PVA@cCNC). This created nanoisland‐like regions of aligned and random cCNC‐rich fibers. The composite scaffold, under fluid shear stimulation, modulated macrophage polarization from M1 to M2 ...
Keya Ganguly   +8 more
wiley   +1 more source

Cell Surface Thiol Engineering Mechanoregulates Myogenic Differentiation via the FAK–PI3K–AKT Axis

open access: yesAdvanced Healthcare Materials, EarlyView.
Schematic diagram illustrating how cell surface modification of skeletal muscle progenitor cells through TCEP treatment reveals enhanced cell adhesion, intracellular tension, and myogenesis at 19.66 kPa stiffness, leading to optimal cell fusion. In contrast, no significant changes are observed in the softer (10.61 kPa) or stiffer (49.4 kPa) matrices ...
Juyeon Kim   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy