Results 221 to 230 of about 1,679,013 (321)

Designing Memristive Materials for Artificial Dynamic Intelligence

open access: yesAdvanced Intelligent Discovery, EarlyView.
Key characteristics required of memristors for realizing next‐generation computing, along with modeling approaches employed to analyze their underlying mechanisms. These modeling techniques span from the atomic scale to the array scale and cover temporal scales ranging from picoseconds to microseconds. Hardware architectures inspired by neural networks
Youngmin Kim, Ho Won Jang
wiley   +1 more source

Deciphering the performance of different surface models for corneal topography. [PDF]

open access: yesOphthalmic Physiol Opt
Langenbucher A   +4 more
europepmc   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Automatic Determination of Quasicrystalline Patterns from Microscopy Images

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work introduces a user‐friendly machine learning tool to automatically extract and visualize quasicrystalline tiling patterns from atomically resolved microscopy images. It uses feature clustering, nearest‐neighbor analysis, and support vector machines. The method is broadly applicable to various quasicrystalline systems and is released as part of
Tano Kim Kender   +2 more
wiley   +1 more source

Thermally Distinguishable Polyhedral Shapes in Chemistry: 6- and 7‑Coordination. [PDF]

open access: yesACS Omega
Munguba GHL   +4 more
europepmc   +1 more source

Artificial Intelligence‐Driven Insights into Electrospinning: Machine Learning Models to Predict Cotton‐Wool‐Like Structure of Electrospun Fibers

open access: yesAdvanced Intelligent Discovery, EarlyView.
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia   +3 more
wiley   +1 more source

An Ore-type theorem for perfect packings in graphs

open access: green, 2008
Daniela Kühn   +2 more
openalex   +2 more sources

Home - About - Disclaimer - Privacy