Results 101 to 110 of about 78,397 (271)

A Smart Bio‐Battery Facilitates Diabetic Bone Defect Repair Via Inducing Macrophage Reprogramming and Synergistically Modulating Bone Remodeling Coupling

open access: yesAdvanced Functional Materials, EarlyView.
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv   +10 more
wiley   +1 more source

Multiscale Modeling for Mechanical Properties of Cancellous Bone Based on the Schwarz Surface

open access: yesMATEC Web of Conferences, 2017
Microstructure and the mechanical properties of cancellous bone were modeled by multiscale finite element method in this paper. Microstructure of the cancellous bone determines its mechanical properties and a rational geometry modeling of the cancellous ...
Huang ZhiQiang   +4 more
doaj   +1 more source

Multifunctional Microstructured Surfaces by Microcontact Printing of Reactive Microgels

open access: yesAdvanced Functional Materials, EarlyView.
Reactive poly(N‐vinylcaprolactam‐co‐glycidyl methacrylate) microgels are used as functional inks to create surface‐grafted arrays on glass via microcontact printing. The patterns (10–50 µm widths and spacings) enable stable binding and post‐functionalization with dyes and peptides.
Inga Litzen   +4 more
wiley   +1 more source

Exploiting Two‐Photon Lithography, Deposition, and Processing to Realize Complex 3D Magnetic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey   +5 more
wiley   +1 more source

Tailoring Microstructure in Copper‐Based Conductive Metal–Organic Frameworks for Enhanced Chemiresistive Sensing and Uptake of Sulfur Dioxide

open access: yesAdvanced Functional Materials, EarlyView.
Precursor‐ and solvent‐mediated synthesis yields four Cu3(HHTP)2 morphologies with distinct physicochemical, sorption, and sensing properties toward SO2. Uptake capacities correlate with BET surface area, while sensing performance scales with particle aspect ratio.
Patrick Damacet   +5 more
wiley   +1 more source

Multi-objective topology optimization of porous microstructure in die-bonding layer of a semiconductor

open access: yesScience and Technology of Advanced Materials: Methods
To enhance semiconductor efficiency, it is imperative to develop a die-bonding material possessing exceptional thermal conductivity and stress-shielding capabilities to safeguard semiconductor components from detrimental heat and destructive stress.
Jiaxin Zhou   +4 more
doaj   +1 more source

Multi‐Ion Doping Controlled CEI Formation in Structurally‐Stable High‐Energy Monoclinic‐Phase NASICON Cathodes for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The graphical abstract illustrates the synthesis pathway, morphological feature, and thermodynamic feasibility of entropy‐engineered NASICON cathodes for sodium‐ion batteries. Abstract Overcoming the energy density limitations of sodium‐ion batteries (NIBs) requires innovative strategies to optimize cathode materials.
Sharad Dnyanu Pinjari   +9 more
wiley   +1 more source

Guidelines for 1D-periodic surface microstructures for antireflective lenses

open access: yesOptics Express, 2010
Antireflective properties of one-dimensional periodically microstructured lens surfaces (refractive index 1.5) are studied with the Green's function surface integral equation method, and design guidelines are obtained. Special attention is given to the requirement of having practically all incident light transmitted in the fundamental transmission ...
Thomas, Søndergaard   +5 more
openaire   +2 more sources

Maya Blue‐Inspired Hybrid Coating for Robust and Superhydrophilic Solar Evaporators Using Commercial Black Acrylic Paint

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates a Maya blue‐inspired hybrid solar evaporator using commercial black acrylic paint, achieving 98% solar‐thermal conversion efficiency and 2.39 kg m−2 h−1 water evaporation rate through a durable, hydrophilic organic–inorganic structure that enables scalable, cost‐effective desalination and wastewater purification.
Dao Thi Dung   +5 more
wiley   +1 more source

Analysis of the Electrochemical Stability of Sulfide Solid Electrolyte Dry Films for Improved Dry‐Processed Solid‐State Batteries

open access: yesAdvanced Functional Materials, EarlyView.
An adapted processing for solvent‐free argyrodite solid electrolyte films based on insights into degradation mechanisms of the widely used binder polytetrafluoroethylene is presented. By adapting the dry film processing, long‐term cycling in Si||NMC pouch cells is demonstrated over more than 1000 cycles with a capacity retention of more than 80%, and ...
Maria Rosner   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy