Results 121 to 130 of about 1,493,991 (168)
A Soft Microrobot for Single‐Cell Transport, Spheroid Assembly, and Dual‐Mode Drug Screening
A soft, untethered hydrogel microrobot enables precise single‐cell delivery, self‐assembly into 3D spheroids, and real‐time thermal actuation. Driven by light‐induced convection and embedded with gold nanorods and temperature sensors, the microrobot guides cells, modulates local microenvironments, and supports drug testing.
Philipp Harder +3 more
wiley +1 more source
Engineered Protein‐Based Ionic Conductors for Sustainable Energy Storage Applications
Rational incorporation of charged residues into an engineered, self‐assembling protein scaffold yields solid‐state protein films with outstanding ionic conductivity. Salt‐doping further enhances conductivity, an effect amplified in the engineered variants. These properties enable the material integration into an efficient supercapacitor.
Juan David Cortés‐Ossa +14 more
wiley +1 more source
Sculpting the Future of Bone: The Evolution of Absorbable Materials in Orthopedics
This review summarizes the current status of polymeric, ceramic, and metallic absorbable materials in orthopedic applications, and highlights several innovative strategies designed to enhance mechanical performance, control degradation, and promote bioactivity. We also discuss the progress and translational potential of absorbable materials in treating
Zhao Wang +13 more
wiley +1 more source
Crystal Engineering of Reticular Materials for Gas‐ and Liquid‐Phase Hydrocarbon Separation
Crystal engineering enables systematic study of structure/function relationships as exemplified by pore engineering of reticular sorbents, including porous coordination networks and covalent organic frameworks. This review assesses such studies applied across the full scope of industrially relevant hydrocarbon separations to provide insight into how ...
Xia Li +2 more
wiley +1 more source
Giant Berry‐phase‐Driven X‐Ray Beam Translations in Strain‐Engineered Semiconductor Crystals
Due to the Berry‐phase effect, X‐rays propagating in deformed crystals undergo large translations, interesting for X‐ray optics applications. Here, the lattice expansion observed upon H irradiation of dilute‐nitride semiconductors is exploited to engineer the deformation landscape of selectively hydrogenated GaAsN epilayers.
Marco Felici +9 more
wiley +1 more source
A linker‐desymmetrization‐modulator‐compensation (LDMC) strategy for constructing structurally diverse Zr‐MOFs is reported. This approach reduces linker symmetry to create defects in Zr‐clusters, which can be compensated for by modulator coordination. Using this approach, we synthesized PCN‐1005 and PCN‐1006, featuring unprecedented Zr‐clusters. In PCN‐
Rong‐Ran Liang +8 more
wiley +1 more source
Organic Electrochemical Transistors for Neuromorphic Devices and Applications
Organic electrochemical transistors are emerging as promising platforms for neuromorphic devices that emulate neuronal and synaptic activities and can seamlessly integrate with biological systems. This review focuses on resultant organic artificial neurons, synapses, and integrated devices, with an emphasis on their ability to perform neuromorphic ...
Kexin Xiang +4 more
wiley +1 more source
Recent Advances in Collective Behaviors of Micro/Nanomotor Swarms
This review describes the driving forces behind collective motion, explores the self‐organization of micro/nano swarms across zero‐dimensional (0D), one‐dimensional (1D), two‐dimensional (2D), and three‐dimensional (3D) spaces, and highlights their potential in drug delivery, environmental monitoring, and smart devices.
Siwen Sun +4 more
wiley +1 more source
C16 Phase High Entropy Borides With High Magnetic Anisotropy
Rare‐earth‐free C16‐phase high entropy boride thin films exhibit enhanced magnetic anisotropy with coercivities surpassing their binary and ternary counterparts. Combinatorial synthesis of (Fe‐Co‐Ni‐Mn)2B films combined with density functional theory enables mapping of the magnetic properties across the composition space, revealing high entropy ...
Willie B. Beeson +5 more
wiley +1 more source
Schematic illustration of the electrically assisted thermal stamping (EATS) method for direct fabrication of carbon‐based nanofilms and their multifunctional applications. Localized Joule heating triggers simultaneous exfoliation, reduction, and fluoropolymer incorporation under ambient conditions, yielding tunable carbon‐based thin‐film coatings ...
Byungseok Seo +9 more
wiley +1 more source

