Results 11 to 20 of about 339,574 (318)
Series with Commuting Terms in Topologized Semigroups
We show that the following general version of the Riemann–Dirichlet theorem is true: if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized semigroup converges, then its sum range is a singleton.
Alberto Castejón +2 more
doaj +1 more source
Quasi-permutation Representations of Borel and Parabolic Subgroups of Steinberg's triality groups [PDF]
If G is a finite linear group of degree n, that is, a finite group of automor-phisms of an n-dimensional complex vector space, or equivalently, a finite group of non-singular matrices of order n with complex coefficients, we shall say that G is a quasi ...
M. Ghorbany
doaj +1 more source
Generation modulo the action of a permutation group [PDF]
Originally motivated by algebraic invariant theory, we present an algorithm to enumerate integer vectors modulo the action of a permutation group. This problem generalizes the generation of unlabeled graph up to an isomorphism.
Nicolas Borie
doaj +1 more source
Non-Nudgable Subgroups of Permutations [PDF]
Motivated by a problem from behavioral economics, we study subgroups of permutation groups that have a certain strong symmetry. Given a fixed permutation, consider the set of all permutations with disjoint inversion sets. The group is called non-nudgable,
Netzer, Tim
core +2 more sources
Trivial source bimodule rings for blocks and p-permutation equivalences [PDF]
We associate with any p-block of a finite group a Grothendieck ring of certain p-permutation bimodules. We extend the notion of p-permutation equivalences introduced by Boltje and Xu [4] to source algebras of p-blocks of finite groups.
Linckelmann, M.
core +1 more source
Novel Criteria for Deterministic Remote State Preparation via the Entangled Six-Qubit State
In this paper, our concern is to design some criteria for deterministic remote state preparation for preparing an arbitrary three-particle state via a genuinely entangled six-qubit state.
Gang Xu +5 more
doaj +1 more source
ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES [PDF]
A permutation with no fixed points is called a derangement. The subset $mathcal{D}$ of a permutation group is derangement if all elements of $mathcal{D}$ are derangement.
Modjtaba Ghorbani, Mina Rajabi-Parsa
doaj +1 more source
ALGEBRAIC QUANTUM PERMUTATION GROUPS [PDF]
We discuss some algebraic aspects of quantum permutation groups, working over arbitrary fields. If 𝕂 is any characteristic zero field, we show that there exists a universal cosemisimple Hopf algebra coacting on the diagonal algebra 𝕂n: this is a refinement of Wang's universality theorem for the (compact) quantum permutation group.
openaire +4 more sources
3-Homogeneous Groups and Block-Transitive 7–(v, k, 3) Designs
The classification of a block-transitive designs is an important subject on algebraic combinatorics. With the aid of MATLAB software, using the classification theorem of 3-homogeneous permutation groups, we look at the classification problem of block ...
Xiaolian Liao, Guohua Chen, Shangzhao Li
doaj +1 more source
Permutation Polytopes of Cyclic Groups [PDF]
We investigate the combinatorics and geometry of permutation polytopes associated to cyclic permutation groups, i.e., the convex hulls of cyclic groups of permutation matrices.
Barbara Baumeister +3 more
doaj +1 more source

