Results 121 to 130 of about 105,088 (326)

The Dynamics of Interfacial Trap States in High‐Detectivity Near‐Infrared Photomultiplication Organic Photodetectors

open access: yesAdvanced Functional Materials, EarlyView.
Photomultiplication organic photodetectors (PM OPDs) are an attractive strategy for health‐monitoring. Here, PM‐OPDs are reported with a specific detectivity of 5.7 × 1012 Jones and external quantum efficiency values of 3500% under −10 V. The dynamics of carrier trapping in these devices are elucidated through trap selective spectroscopical techniques.
Marie Houot   +9 more
wiley   +1 more source

Simulation and architectural design for Schottky structure perovskite solar cells

open access: diamond, 2020
Xiaojuan Liang   +6 more
openalex   +1 more source

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Perovskite-structure TlBO3 (B = Cr, Mn) for thermomechanical and optoelectronic applications: an investigation via a DFT scheme. [PDF]

open access: yesRSC Adv, 2022
Hasan W   +9 more
europepmc   +1 more source

Electronic structure of the highly conductive perovskite oxide SrMoO3 [PDF]

open access: hybrid, 2022
E. Cappelli   +14 more
openalex   +1 more source

Purcell‐Enhanced Spectrally Precise Emission in Dual‐Microcavity Organic Light‐Emitting Diodes

open access: yesAdvanced Functional Materials, EarlyView.
Spectrally precise emission from broadband organic light‐emitting diodes is realized via a dual‐microcavity strategy. This architecture achieves narrowband emission (full width at half maximum, FWHM = 21 nm) with ultrapure color approaching BT.2020 by enhancing the Purcell effect via coupling of excitons with dual‐microcavity resonance.
Jun Yong Kim   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy