Results 201 to 210 of about 2,864,204 (394)

Unleashing the Power of Machine Learning in Nanomedicine Formulation Development

open access: yesAdvanced Functional Materials, EarlyView.
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore   +7 more
wiley   +1 more source

Decoding personality functioning: the impact of DSM-5 pathological traits mediated by emotion dysregulation and metacognition. [PDF]

open access: yesBorderline Personal Disord Emot Dysregul
Nazari A   +5 more
europepmc   +1 more source

Electron Compensation Enhanced Triboelectric Sensor Assisted by Machine Learning for Tactile Perception Recognition

open access: yesAdvanced Functional Materials, EarlyView.
Integrating polyethyleneimine and carbon black into polyurethane enhances electron transport and mechanical durability. The resulting sensor achieves significantly improved electrical signal and sensitivity, enabling efficient machine learning‐based tactile signal recognition in bionic applications.
Xiangkun Bo   +4 more
wiley   +1 more source

Tailoring the Properties of Functional Materials With N‐Oxides

open access: yesAdvanced Functional Materials, EarlyView.
The properties of materials bearing N‐oxide groups are often dominated by the polar N+─O− bond. It provides hydrophilicity, selective ion‐binding, electric conductivity, or antifouling properties. Many of the underlying mechanisms have only recently been discovered, and the interest in N‐oxide materials is rapidly growing.
Timo Friedrich   +5 more
wiley   +1 more source

TRIPLE PERSONALITY [PDF]

open access: green, 1892
IRVING C. ROSSE
openalex   +1 more source

A Smart Magnetically Actuated Flip‐Disc Programmable Metasurface with Ultralow Power Consumption for Real‐Time Channel Control

open access: yesAdvanced Functional Materials, EarlyView.
The study proposes a 1‐bit programmable metasurface based on flip‐disc display, named flip‐disc metasurface (FD‐MTS). This new design enables ultralow energy consumption while maintaining coding patterns. It also exhibits high scalability and multifunctional flexibility.
Jiang Han Bao   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy