Results 121 to 130 of about 2,392,452 (289)

Ion‐Selective Microporous Membranes via One‐Step Copolymerization Enable High‐Performance Redox Flow Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A scalable one‐step copolymerization strategy is developed to produce low‐cost microporous ion exchange membranes that boost both the efficiency and lifespan of flow batteries. When combined with organic electrolytes in aqueous systems, these membranes enable safe and cheap flow battery energy storage, supporting the widespread integration of renewable
Jiaye Liu   +7 more
wiley   +1 more source

Self‐Immolative Activatable Nanoassembly toward Immuno‐Photodynamic Therapy in TME

open access: yesAdvanced Functional Materials, EarlyView.
A quinone methide‐gated, self‐immolative, H2O2‐responsive nano‐photosensitizer (Pyz/PS) is developed for targeted immuno‐photodynamic therapy. Pyz/PS selectively activates within tumor microenvironments, restores photosensitizer activity, generates ROS, and depletes intracellular GSH, enhancing oxidative stress.
Jing Li   +10 more
wiley   +1 more source

Harnessing Non‐Covalent Protein–Protein Interaction Domains for Production of Biocatalytic Materials Systems

open access: yesAdvanced Functional Materials, EarlyView.
Non‐covalent protein–protein interactions mediated by SH3, PDZ, or GBD domains enable the self‐assembly of stable and biocatalytically active hydrogel materials. These soft materials can be processed into monodisperse foams that, once dried, exhibit enhanced mechanical stability and activity and are easily integrated into microstructured flow ...
Julian S. Hertel   +5 more
wiley   +1 more source

Siloxane‐Functionalized Silicon Phthalocyanine OTFTs: High Hole Mobility and Unexpected p‐Type Character

open access: yesAdvanced Functional Materials, EarlyView.
In this paper, the first use of a siloxane‐substituted silicon phthalocyanine (iso(Si3O)2SiPc) in OTFTs is reported. Moreover, this compound displays the highest hole mobility (exceeding 1 cm2 V−1 s−1) ever recorded for SiPc, and the GIWAXS study reveals thin films with an exceptionally uniform crystalline texture.
Nicolas Ledos   +5 more
wiley   +1 more source

Bioinspired Design of a Wet‐Adhesive Cornea Glue Based on Recombinant Human Protein Networks

open access: yesAdvanced Functional Materials, EarlyView.
Natures protein‐based high performance materials e.g. elastin, silk and muscle proteins have been mimicked by a new protein‐hybrid material based on redesigned human partial sequences only, showing high wet‐adhesiveness and elasticity for biomedical applications.
Anna Resch   +17 more
wiley   +1 more source

RoHS‐Compliant, Cu‐Zn‐In‐Se‐Based Core/Multi‐shell Quantum Dots with Efficient and Tunable Short‐Wave Infrared Emission

open access: yesAdvanced Functional Materials, EarlyView.
An innovative combination of size‐controlled template synthesis, partial cation exchange reactions, and dual shell passivation offers a new class of RoHS‐compliant, heavy metal‐free Cu‐Zn‐In‐Se/ZnS/Al2O3 core/shell/shell quantum dots (QDs), exhibiting long‐range tunability, highly efficient SWIR emission with remarkably narrow photoluminescence ...
Avijit Saha   +8 more
wiley   +1 more source

Robust Bio‐Textiles Via Mycelium‐Cellulose Interface Engineering

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a new class of sustainable textiles by growing mycelium, the root‐like structure of fungi, into cellulose‐based fabrics. This semi‐interpenetrating mycelium‐cellulose fiber network combines the strength and breathability of natural fibers with the water‐resistant and adhesive properties of mycelium, resulting in a robust, scalable,
Wenhui Xu   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy