Results 1 to 10 of about 10,572,512 (387)
Hadron widths in mixed-phase matter. [PDF]
Physical Review C, 1994 We derive classically an expression for a hadron width in a two-phase region of hadron gas and quark-gluon plasma (QGP). The presence of QGP gives hadrons larger widths than they would have in a pure hadron gas. We find that the [phi] width observed in a David Seibert, Che Ming Kosemanticscholar +8 more sourcesComputationally Universal Phase of Quantum Matter. [PDF]
Physical Review Letters, 2018 We provide the first example of a symmetry protected quantum phase that has universal computational power. This two-dimensional phase is protected by one-dimensional linelike symmetries that can be understood in terms of the local symmetries of a tensor ...R. Raussendorf, C. Okay, Dongsheng Wang, David T. Stephen, Hendrik Poulsen Nautrup +4 moresemanticscholar +7 more sourcesMachine learning phases of matter [PDF]
Nature Physics, 2016 The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique is even amenable to detecting non-trivial states lacking in conventional order.J. Carrasquilla, R. Melkosemanticscholar +5 more sourcesVORTEX PHASES IN CONDENSED MATTER AND COSMOLOGY [PDF]
COSMO-99, 2000 Placing a high-Tc superconductor in an increasing external magnetic field, the flux first penetrates the sample through an Abrikosov vortex lattice, and then a first order transition is observed by which the system goes to the normal phase. We discuss the cosmological motivation for considering the electroweak phase transition in the presence of an ...M. Laineopenalex +6 more sourcesFirst Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment. [PDF]
Physical Review Letters, 2022 The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA.J. Aalbers, D. Akerib, C. Akerlof, A. K. A. Musalhi, F. Alder, A. Alqahtani, S. Alsum, C. Amarasinghe, A. Ames, T. Anderson, N. Angelides, H. Araújo, J. E. Armstrong, M. Arthurs, S. Azadi, A. J. Bailey, A. Baker, J. Balajthy, S. Balashov, J. Bang, J. Bargemann, M. J. Barry, J. Barthel, D. Bauer, A. Baxter, K. Beattie, J. Belle, P. Beltrame, J. Bensinger, T. Benson, E. Bernard, A. Bhatti, A. Biekert, T. P. Biesiadzinski, H. Birch, B. Birrittella, G. Blockinger, K. Boast, B. Boxer, R. Bramante, C. Brew, P. Brás, J. Buckley, V. Bugaev, S. Burdin, J. Busenitz, M. Buuck, R. Cabrita, C. Carels, D. Carlsmith, B. Carlson, M. Carmona-Benitez, M. Cascella, C. Chan, A. Chawla, H. Chen, J. Cherwinka, N. Chott, A. Cole, J. Coleman, M. Converse, A. Cottle, G. Cox, W. Craddock, O. Creaner, D. Curran, A. Currie, J. Cutter, C. Dahl, A. David, J. Davis, T. Davison, J. Delgaudio, S. Dey, L. D. Viveiros, A. Dobi, J. Dobson, E. Druszkiewicz, A. Dushkin, T. Edberg, W. Edwards, M. Elnimr, W. Emmet, S. R. Eriksen, C. Faham, A. Fan, S. Fayer, N. Fearon, S. Fiorucci, H. Flaecher, P. Ford, V. Francis, E. Fraser, T. Fruth, R. Gaitskell, N. J. Gantos, D. Garcia, A. Geffre, V. Gehman, J. Genovesi, C. Ghag, R. Gibbons, E. Gibson, M. Gilchriese, S. Gokhale, B. Gomber, J. Green, A. Greenall, S. Greenwood, M. D. Grinten, C. Gwilliam, C. Hall, S. Hans, K. Hanzel, A. Harrison, E. Hartigan-O’Connor, S. Haselschwardt, S. Hertel, G. Heuermann, C. Hjemfelt, M. D. Hoff, E. Holtom, J. Hor, M. Horn, D. Q. Huang, D. Hunt, C. Ignarra, R. Jacobsen, O. Jahangir, R. James, S. Jeffery, W. Ji, J. Johnson, A. Kaboth, A. Kamaha, K. Kamdin, V. Kasey, K. Kazkaz, J. Keefner, D. Khaitan, M. Khaleeq, A. Khazov, I. Khurana, Y. D. Kim, C. D. Kocher, D. Kodroff, L. Korley, E. Korolkova, J. Kraś, H. Kraus, S. Kravitz, H. Krebs, L. Kreczko, B. Krikler, V. Kudryavtsev, S. Kyre, B. Landerud, E. Leason, C. Lee, J. Lee, D. Leonard, R. Leonard, K. Lesko, C. Levy, Jun Yu Li, F. Liao, J. Liao, J. Lin, A. Lindote, R. Linehan, W. Lippincott, R. Liu, X. Liu, Y. Liu, C. Loniewski, M. Lopes, E. Asamar, B. L. Paredes, W. Lorenzon, D. Lucero, S. Luitz, J. Lyle, P. Majewski, J. Makkinje, D. Malling, A. Manalaysay, L. Manenti, R. Mannino, N. Marangou, M. F. Marzioni, C. Maupin, M. McCarthy, C. T. Mcconnell, D. McKinsey, J. Mclaughlin, Y. Meng, J. Migneault, E. Miller, E. Mizrachi, J. Mock, A. Monte, M. Monzani, J. Morad, J. D. Mendoza, E. Morrison, M. Murdy, A. Murphy, D. Naim, A. Naylor, C. Nedlik, C. Nehrkorn, H. Nelson, F. Neves, A. Nguyen, J. Nikoleyczik, A. Nilima, J. O’Dell, F. O’Neill, K. O'Sullivan, I. Olcina, M. Olevitch, K. Oliver-Mallory, J. Orpwood, D. Pagenkopf, S. Pal, K. Palladino, J. Palmer, M. Pangilinan, N. Parveen, S. Patton, E. K. Pease, B. Penning, C. Pereira, G. Pereira, E. Perry, T. Pershing, I. Peterson, A. Piepke, J. Podczerwinski, D. Porzio, S. Powell, R. Preece, K. Pushkin, Y. Qie, B. Ratcliff, J. Reichenbacher, L. Reichhart, C. Rhyne, A. Richards, Q. Riffard, G. Rischbieter, J. Rodrigues, A. Rodriguez, H. Rose, R. Rosero, P. Rossiter, T. Rushton, G. Rutherford, D. Rynders, J. Saba, D. Santone, A. Sazzad, R. Schnee, P. Scovell, D. Seymour, S. Shaw, T. Shutt, J. Silk, C. Silva, G. Sinev, K. Skarpaas, W. Skulski, R. Smith, M. Solmaz, V. Solovov, P. Sorensen, J. Soria, I. Stancu, M. R. Stark, A. Stevens, T. Stiegler, K. Stifter, R. Studley, B. Suerfu, T. Sumner, P. Sutcliffe, N. Swanson, M. Szydagis, M. Tan, D. Taylor, R. Taylor, W. Taylor, B. Tennyson, P. Terman, K. J. Thomas, D. Tiedt, M. Timalsina, A. Tomás, Z. Tong, J. Tranter, M. Trask, M. Tripathi, D. Tronstad, C. Tull, W. Turner, L. Tvrznikova, U. Utku, A. Vacheret, A. Vaitkus, J. Verbus, E. Voirin, W. Waldron, A. Wang, B. Wang, J. J. Wang, W. Wang, Y. Wang, J. R. Watson, R. Webb, A. White, D. White, J. White, R. G. White, T. Whitis, M. Williams, W. Wiśniewski, M. Witherell, F. Wolfs, J. Wolfs, S. Woodford, D. Woodward, C. Wright, Q. Xia, X. Xiang, Q. Xiao, J. Xu, M. Yeh, J. Yin, I. Young, P. Zarzhitsky, A. Zuckerman, E. Zweig +341 moresemanticscholar +1 more sourceFracton phases of matter [PDF]
International Journal of Modern Physics A, 2020 Fractons are a new type of quasiparticle which are immobile in isolation, but can often move by forming bound states. Fractons are found in a variety of physical settings, such as spin liquids and elasticity theory, and exhibit unusual phenomenology, such as gravitational physics and localization.Pretko, Michael, Chen, Xie, You, Yizhiopenaire +6 more sources