Results 281 to 290 of about 824,488 (337)

Ambient‐Dried MOF/Cellulose‐Based Aerogels for Atmospheric Water Harvesting and Sustainable Water Management in Agriculture

open access: yesAdvanced Functional Materials, EarlyView.
Ambient‐dried composite aerogels integrating MOF‐303, TEMPO‐oxidized cellulose nanofibers (TOCNF), and hygroscopic salts enable high‐performance atmospheric water harvesting (AWH), achieving competitive uptake at both low and high humidity. Enhanced with a solar‐evaporation layer, these scalable aerogels support self‐sustained plant growth in a ...
Ahmadreza Ghaffarkhah   +12 more
wiley   +1 more source

Thiol‐Modulation‐Induced Mesoporous Nanosheets with an Alloy/Intermetallic Heterophase for Efficient Electrochemical Ethylene Glycol‐Assisted Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
Sulfur‐capped mesoporous PtPbBi nanosheets (S‐PtPbBi MNSs) with an alloy/intermetallic compound heterophase and inhomogeneous tensile strain (≈3%) were synthesized by a thiol modification strategy, which exhibited excellent electrocatalytic performance for ethylene glycol oxidation reaction (EGOR).
Fukai Feng   +14 more
wiley   +1 more source

Biodegradable and Recyclable Luminescent Mixed‐Matrix‐Membranes, Hydrogels, and Cryogels based on Nanoscale Metal‐Organic Frameworks and Biopolymers

open access: yesAdvanced Functional Materials, EarlyView.
The study presents biodegradable and recyclable mixed‐matrix membranes (MMMs), hydrogels, and cryogels using luminescent nanoscale metal‐organic frameworks (nMOFs) and biopolymers. These bio‐nMOF‐MMMs combine europium‐based nMOFs as probes for the status of the materials with the biopolymers agar and gelatine and present alternatives to conventional ...
Moritz Maxeiner   +4 more
wiley   +1 more source

Extinction studies in focus: Reflections on photography at a time of ecological decline. [PDF]

open access: yesCamb Prism Extinct
Simpson K   +6 more
europepmc   +1 more source

Highly Scalable, Raspberry‐Like Microbeads with Nano‐/Micro‐Confined Hybrid Hydrogel Desiccants for Rapid Atmospheric Water Harvesting

open access: yesAdvanced Functional Materials, EarlyView.
A scalable nano‐/micro‐confinement strategy is developed, where polyacrylamide (PAM)‐LiCl hybrid desiccants are confined within hollow nanoparticles (HNPs) and assembled into raspberry‐like microbeads. The beads have a hydrogel‐rich core and an NP‐rich shell for fast absorption and desorption, releasing water 13.6 L kg⁻¹ day⁻¹.
Yunchan Lee   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy