Results 291 to 300 of about 10,688,602 (385)
A galactose‐modified supramolecular near‐infrared (NIR) glycoprobe, TCF‐FBN@Gal‐BSA, enables targeted delivery to the liver through the asialoglycoprotein receptor (ASGPR) and facilitates liver‐targeting fluorescence visualization of lipid droplets (LDs) in metabolic dysfunction‐associated steatotic liver disease (MASLD) mice.
Han‐Min Wang+12 more
wiley +1 more source
Clinician perspectives on virtual reality use in physical therapy practice in the United States. [PDF]
Felsberg DT+5 more
europepmc +1 more source
Oct4‐nanoscript, a biomimetic nanoparticle‐based artificial transcription factor, precisely regulates cellular rejuvenation by activating Oct4 target genes, restoring epigenetic marks, and reducing DNA damage. In a progeria model, it effectively rescued aging‐associated pathologies and extended lifespan.
Hongwon Kim+8 more
wiley +1 more source
This review highlights recent advances in engineering artificial antigen‐presenting cells (aAPCs) as alternatives to dendritic cells for T cell expansion. Key design principles inspired by the immunological synapse are discussed, with emphasis on strategies for polyclonal and antigen‐specific T cell expansion.
Nguyen Thi Nguyen, Yu Seok Youn
wiley +1 more source
Physical therapy assistance in labor: A systematic review and meta-analysis. [PDF]
Delgado A+5 more
europepmc +1 more source
Intraoral Drug Delivery: Bridging the Gap Between Academic Research and Industrial Innovations
Intraoral drug delivery offers a promising route for systemic and localized therapies, yet challenges such as enzymatic degradation, limited permeability, and microbial interactions hinder efficacy. This figure highlights innovative strategies—mucoadhesive materials, enzyme inhibitors, and permeation enhancers—to overcome these barriers.
Soheil Haddadzadegan+4 more
wiley +1 more source
Flow‐Induced Vascular Remodeling on‐Chip: Implications for Anti‐VEGF Therapy
Flow‐induced vascular remodeling plays a critical role in network stabilization and function. Using a vasculature‐on‐chip system, this study reveals how physiological VEGF levels and flow affect vascular remodeling and provides insights into tumor vessel normalization.
Fatemeh Mirzapour‐Shafiyi+6 more
wiley +1 more source