Results 21 to 30 of about 1,225,473 (292)
Fluorescent probes allow dynamic visualization of phosphoinositides in living cells (left), whereas mass spectrometry provides high‐sensitivity, isomer‐resolved quantitation (right). Their synergistic use captures complementary aspects of lipid signaling. This review illustrates how these approaches reveal the spatiotemporal regulation and quantitative
Hiroaki Kajiho +3 more
wiley +1 more source
Kondo effect in three-dimensional Dirac and Weyl systems
Magnetic impurities in three-dimensional Dirac and Weyl systems are shown to exhibit a fascinatingly diverse range of Kondo physics, with distinctive experimental spectroscopic signatures.
Fritz, Lars, Mitchell, Andrew K.
core +5 more sources
In this study, we present the structure of AcrIE8.1, a previously uncharacterized anti‐CRISPR protein that inhibits the type I‐E CRISPR‐Cas system. Through a combination of structural and biochemical analyses, we demonstrate that AcrIE8.1 directly binds to the Cas11 subunit of the Cascade complex to inhibit the CRISPR‐Cas system.
Young Woo Kang, Hyun Ho Park
wiley +1 more source
Hematopoietic (stem) cells—The elixir of life?
The aging of HSCs (hematopoietic stem cells) and the blood system leads to the decline of other organs. Rejuvenating aged HSCs improves the function of the blood system, slowing the aging of the heart, kidney, brain, and liver, and the occurrence of age‐related diseases.
Emilie L. Cerezo +4 more
wiley +1 more source
The liquid Argon TPC: a powerful detector for future neutrino experiments and proton decay searches
We discuss the possibility of new generation neutrino and astroparticle physics experiments exploiting the liquid Argon Time Projection Chamber (LAr TPC) technique, following a graded strategy that envisions applications with increasing detector masses ...
A. Ereditato +23 more
core +3 more sources
Imaginary chemical potential and finite fermion density on the lattice [PDF]
Standard lattice fermion algorithms run into the well-known sign problem at real chemical potential. In this paper we investigate the possibility of using imaginary chemical potential, and argue that it has advantages over other methods, particularly for
A. Hasenfratz +15 more
core +2 more sources
The role and implications of mammalian cellular circadian entrainment
At their most fundamental level, mammalian circadian rhythms occur inside every individual cell. To tell the correct time, cells must align (or ‘entrain’) their circadian rhythm to the external environment. In this review, we highlight how cells entrain to the major circadian cues of light, feeding and temperature, and the implications this has for our
Priya Crosby
wiley +1 more source
Analytic, Group-Theoretic Density Profiles for Confined, Correlated N-Body Systems
Confined quantum systems involving $N$ identical interacting particles are to be found in many areas of physics, including condensed matter, atomic and chemical physics. A beyond-mean-field perturbation method that is applicable, in principle, to weakly,
B. A. McKinney +12 more
core +1 more source
Molecular bases of circadian magnesium rhythms across eukaryotes
Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...
Helen K. Feord, Gerben van Ooijen
wiley +1 more source
This perspective highlights emerging insights into how the circadian transcription factor CLOCK:BMAL1 regulates chromatin architecture, cooperates with other transcription factors, and coordinates enhancer dynamics. We propose an updated framework for how circadian transcription factors operate within dynamic and multifactorial chromatin landscapes ...
Xinyu Y. Nie, Jerome S. Menet
wiley +1 more source

