Results 91 to 100 of about 1,786,533 (325)

Analyzing Electronic Excitations and Exciton Binding Energies in Y6 Films

open access: yesAdvanced Functional Materials, EarlyView.
The Y6 molecule is used for increasing the efficiency of organic solar cells. The exciton binding energy is calculated for ensembles of Y6 molecules that are representative of the typically used films. The calculations show that the excitons typically spread out over many molecules.
Sahar Javaid Akram   +2 more
wiley   +1 more source

Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges

open access: yesApplied Informatics
Physics-informed neural networks (PINNs) represent a significant advancement at the intersection of machine learning and physical sciences, offering a powerful framework for solving complex problems governed by physical laws.
Amer Farea   +2 more
semanticscholar   +1 more source

Enhancing Optoelectronic Properties in Phthalocyanine‐Based SURMOFs: Synthesis of ABAB Linkers by Avoiding Statistical Condensation with Tailored Building Blocks

open access: yesAdvanced Functional Materials, EarlyView.
A novel phthalocyanine (PC)‐based metal–organic framework (MOFs) is synthesized using ditopic PC linkers obtained through regioselective statistical condensation. The resulting MOF exhibits significant improvements in electronic absorption, thereby enhancing the material's performance in light harvesting and energy conversion.
Lukas S. Langer   +12 more
wiley   +1 more source

Organic Electrochemical Transistor Channel Materials: Copolymerization Versus Physical Mixing of Glycolated and Alkoxylated Polymers

open access: yesAdvanced Functional Materials, EarlyView.
This work discusses the use of blended channel materials in OECTs. It explores how mixing glycolated and alkoxylated polymers in various ratios offers a simpler and more efficient route to tuning OECT properties. The performance of the polymer blends is compared to the corresponding copolymers, demonstrating similar OECT characteristics, swelling ...
Lize Bynens   +14 more
wiley   +1 more source

Intermolecular Interactions as Driving Force of Increasing Multiphoton Absorption in a Perylene Diimide‐Based Coordination Polymer

open access: yesAdvanced Functional Materials, EarlyView.
This study uncovers the unexplored role of intermolecular interactions in multiphoton absorption in coordination polymers. By analyzing [Zn2tpda(DMA)2(DMF)0.3], it shows how the electronic coupling of the chromophores and confinement in the MOF enhance two‐and three‐photon absorption.
Simon Nicolas Deger   +11 more
wiley   +1 more source

Learning dynamical systems from data: An introduction to physics-guided deep learning

open access: yesProceedings of the National Academy of Sciences of the United States of America
Modeling complex physical dynamics is a fundamental task in science and engineering. Traditional physics-based models are first-principled, explainable, and sample-efficient. However, they often rely on strong modeling assumptions and expensive numerical
Rose Yu, Rui Wang
semanticscholar   +1 more source

Understanding and Optimizing Li Substitution in P2‐Type Sodium Layered Oxides for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous 
Mingfeng Xu   +5 more
wiley   +1 more source

Ab Initio Study on 3D Anisotropic Ferroelectric Switching Mechanism and Coercive Field in HfO2 and ZrO2

open access: yesAdvanced Functional Materials, EarlyView.
This study uncovers a new switching mechanism in HfO2 and ZrO2, where the absence of a non‐polar layer along the a‐direction induces interaction between polar layers. Consequently, the switching barriers for growth are lower than those for nucleation in this direction, leading to a size‐dependent coercive field that matches experimental observations ...
Kun Hee Ye   +6 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy