Results 191 to 200 of about 377,522 (383)

Ti6Al4V‐Bioglass‐Copper Composites for Load‐Bearing Implants

open access: yesAdvanced Healthcare Materials, EarlyView.
We have designed and manufactured a novel Ti64‐based composite by adding 45S5 bioglass (BG) and copper (Cu). Adding BG on titanium improves wear resistance and biocompatibility, whereas Cu addition improves mechanical strength while providing inherent lifelong bacterial resistance.
Lochan Upadhayay   +3 more
wiley   +1 more source

Start, Stop, Rewind, Repeat—Cyclic Exposure of Adipose Stromal Cells‐derived Cartilage Organoids to Chondrogenic and Proliferative Cues to Achieve Scaled‐up and Customizable Bone Formation by Endochondral Ossification

open access: yesAdvanced Healthcare Materials, EarlyView.
This study exploits the plasticity of ASCs‐derived cartilage organoids which generate a perichondrial layer of MSCs when exposed to cyclic chondrogenic/proliferative cues. Using these organoids as building blocks, we develop (i) Phalange Shaped Tissue Engineered Cartilage (Pa‐TECs), recapitulating endochondral ossification suitable for the treatment of
Pablo Pfister   +14 more
wiley   +1 more source

Predication of Backbreak caused by the blasting operations of an open pit mine using Grey Wolf Optimizer (GWO) and Random Forest (RF) algorithms

open access: diamond
A. Appendix   +5 more
openalex   +1 more source

Numerical investigation of pitting corrosion in clinched joints [PDF]

open access: hybrid
Sven Harzheim   +5 more
openalex   +1 more source

Real‐Time 3D Ultrasound Imaging with an Ultra‐Sparse, Low Power Architecture

open access: yesAdvanced Healthcare Materials, EarlyView.
This article presents a novel, ultra‐sparse ultrasound architecture that paves the way for wearable real‐time 3D imaging. By integrating a unique convolutional array with chirped data acquisition, the system achieves high‐resolution volumetric scans at a fraction of the power and hardware complexity.
Colin Marcus   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy