Results 11 to 20 of about 543,681 (314)
Reflexive edge strength of convex polytopes and corona product of cycle with path
For a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ if ...
Kooi-Kuan Yoong+4 more
doaj +1 more source
Even cycles and perfect matchings in claw-free plane graphs [PDF]
Lov{\'a}sz showed that a matching covered graph $G$ has an ear decomposition starting with an arbitrary edge of $G$. Let $G$ be a graph which has a perfect matching.
Shanshan Zhang+2 more
doaj +1 more source
Domination number of annulus triangulations
An {\em annulus triangulation} $G$ is a 2-connected plane graph with two disjoint faces $f_1$ and $f_2$ such that every face other than $f_1$ and $f_2$ are triangular, and that every vertex of $G$ is contained in the boundary cycle of $f_1$ or $f_2$.
Toshiki Abe+2 more
doaj +1 more source
Colorings of Plane Graphs Without Long Monochromatic Facial Paths
Let G be a plane graph. A facial path of G is a subpath of the boundary walk of a face of G. We prove that each plane graph admits a 3-coloring (a 2-coloring) such that every monochromatic facial path has at most 3 vertices (at most 4 vertices).
Czap Július+2 more
doaj +1 more source
Facial rainbow edge-coloring of simple 3-connected plane graphs [PDF]
A facial rainbow edge-coloring of a plane graph \(G\) is an edge-coloring such that any two edges receive distinct colors if they lie on a common facial path of \(G\).
Július Czap
doaj +1 more source
Plane Graphs with Parity Constraints [PDF]
Let S be a set of n points in general position in the plane. Together with S we are given a set of parity constraints, that is, every point of S is labeled either even or odd. A graph G on S satisfies the parity constraint of a point p¿¿¿S, if the parity of the degree of p in G matches its label.
Aichholzer Oswin+6 more
openaire +4 more sources
Graph polynomials and paintability of plane graphs
There exists a variety of coloring problems for plane graphs, involving vertices, edges, and faces in all possible combinations. For instance, in the \emph{entire coloring} of a plane graph we are to color these three sets so that any pair of adjacent or incident elements get different colors.
Jarosław Grytczuk+2 more
openaire +2 more sources
Improved Bounds for Some Facially Constrained Colorings
A facial-parity edge-coloring of a 2-edge-connected plane graph is a facially-proper edge-coloring in which every face is incident with zero or an odd number of edges of each color. A facial-parity vertex-coloring of a 2-connected plane graph is a proper
Štorgel Kenny
doaj +1 more source
Folding Equilateral Plane Graphs [PDF]
We consider two types of folding applied to equilateral plane graph linkages. First, under continuous folding motions, we show how to reconfigure any linear equilateral tree (lying on a line) into a canonical configuration. By contrast, it is known that such reconfiguration is not always possible for linear (nonequilateral) trees and for (nonlinear ...
Abel, Zachary Ryan+6 more
openaire +6 more sources
BgNet: Classification of benign and malignant tumors with MRI multi-plane attention learning
ObjectivesTo propose a deep learning-based classification framework, which can carry out patient-level benign and malignant tumors classification according to the patient’s multi-plane images and clinical information.MethodsA total of 430 cases of spinal
Hong Liu+17 more
doaj +1 more source