Results 131 to 140 of about 877,284 (297)

‘Oxygen Bound to Magnesium’ as High Voltage Redox Center Causes Sloping of the Potential Profile in Mg‐Doped Layered Oxides for Na‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Na‐ion batteries ‐ Impact of doping on the oxygen redox: The sloping potential of NaMg0.1Ni0.4Mn0.5O2 above 4.0 V is caused by a new redox center (arising from the ‘O bound to Mg’), having a higher potential but being more irreversible compared to the ‘O bound to Ni’.
Yongchun Li   +12 more
wiley   +1 more source

Droplet Triboelectrification on Liquid‐Like Polymer Brushes

open access: yesAdvanced Functional Materials, EarlyView.
This work investigates the triboelectrification of water droplets on polymer brush‐coated surfaces exhibiting minimal contact line pinning. Such surfaces enable the systematic study of electrode patterning and controlled changes in droplet contact area.
Mohammad Soltani   +5 more
wiley   +1 more source

The concept of the Anthropocene and its impact on Russian legal doctrine and environmental legislation

open access: yesRUDN Journal of Law
The concept of anthropocene, which refers to a new geological epoch characterized by significant human impact of Earth’s ecosystems, represents much more than a new understanding of the environment as a complex, dynamic set of Earth's ecosystems.
Aleksey P. Anisimov   +2 more
doaj   +1 more source

Self‐Reconstruction of Dual‐Morphology Copper‐Iron Selenides for Cost‐Effective Oxygen Evolution Toward Industrial Alkaline Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
Departing from conventional Ni/Co‐based catalysts, this work presents a Ni/Co‐free CuFe–Se/CFF electrocatalyst with nanoblock–nanorod morphology. It delivers 1000 mA cm−2 at 330 mV overpotential and 620 h stability for the oxygen evolution reaction (OER).
Jiajun Wang   +7 more
wiley   +1 more source

Real‐Time, Label‐Free Monitoring of Cell Behavior on a Bioelectronic Scaffold

open access: yesAdvanced Functional Materials, EarlyView.
A bioelectronic nanofibrous scaffold is introduced that supports cell growth while enabling real‐time, label‐free monitoring of cellular behavior through impedance measurements. The system correlates electrical signals with cell viability and surface coverage, offering an integrated platform for studying dynamic biological processes and advancing next ...
Dana Cohen‐Gerassi   +10 more
wiley   +1 more source

Detection of Maize Crop Phenology Using Planet Fusion

open access: yesRemote Sensing
Accurate identification of crop phenology timing is crucial for agriculture. While remote sensing tracks vegetation changes, linking these to ground-measured crop growth stages remains challenging.
Caglar Senaras   +7 more
doaj   +1 more source

Dual‐Atom Dopants Activated Ruthenium Single‐Atom Alloy Boosting Hydrogen Evolution Electrocatalysis in Proton Exchange Membrane Water Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
Ni1‐Bi1 dual‐atom dopants are achieved for activating Ru lattices without blocking noble atoms. This model exhibits an ultralow overpotential of 11.4 mV and superb stability at 10 mA cm−2 toward hydrogen evolution reaction, enabling a proton exchange membrane water electrolyzer that needs only 2.233 V to reach 3.0 A cm−2 and operates stably at 1.0 A cm−
Shuiping Luo   +17 more
wiley   +1 more source

Discovery of a hyperalkaline liquid condensed phase: significance toward applications in carbon dioxide sequestration

open access: yesFrontiers in Bioengineering and Biotechnology
Bicarbonate ion-containing solutions such as seawater, natural brines, bovine serum and other mineralizing fluids have been found to contain hyperalkaline droplets of a separate, liquid condensed phase (LCP), that have higher concentrations of ...
Mark A. Bewernitz   +6 more
doaj   +1 more source

All‐Aqueous Pullulan Fibers Enabling Visible‐to‐Near‐Infrared Waveguiding with Mechanical and Thermal Resilience

open access: yesAdvanced Functional Materials, EarlyView.
Pullulan, a biomass‐derived polysaccharide, is transformed into transparent optical fibers using a solvent‐free borax hydrogel‐spinning method. The fibers outperform PMMA with ≈200 MPa tensile strength and 200 °C stability, while uniquely guiding visible‐to‐NIR light and enabling additive‐free humidity sensing.
Yuya Fukata   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy