Results 171 to 180 of about 877,284 (297)

Performance Constraints of All‐Perovskite Tandem Solar Cells in Low‐Intensity, Low‐Temperature Environments

open access: yesAdvanced Materials, EarlyView.
All‐perovskite tandem solar cells are evaluated under low‐intensity and low‐temperature (LILT) conditions relevant to space environments. Distinct loss regimes emerge, where weaker entropic mixing causes halide segragation below ≈240 K going along with a strong current imbalance, while poor electron transport in C60 dominates.
Sercan Ozen   +10 more
wiley   +1 more source

DNA Origami‐Templated Aptamer Chiral Structures Realize Cellular Enantioselectivity

open access: yesAdvanced Materials, EarlyView.
Aptamers displayed on tubular DNA origami nanostructures in defined chiral orientations (left‐ or right‐handed) exhibit enantioselective interactions with cell surface target proteins. While the right‐handed configuration supports only transient binding, the left handedness energetically favors protein dimerization and promotes subsequent ...
Tingjie Song   +9 more
wiley   +1 more source

GlobalBuildingMap - Unveiling the mystery of global buildings. [PDF]

open access: yesSci Data
Zhu XX   +6 more
europepmc   +1 more source

“Tear‐And‐Stack” Twisted SrTiO3 Moiré Superlattices for Precise Interfacial Reconstruction and Polar Topology

open access: yesAdvanced Materials, EarlyView.
The tear‐and‐stack method enables the creation of twisted SrTiO3 bilayers with accurate twist‐angle control, which yield atomically sharp oxide moiré superlattices with emergent exotic topological polar vortices, thereby opening a new pathway for twistronics based on 2D‐like non‐van der Waals oxides.
Yingli Zhang   +13 more
wiley   +1 more source

Heterophase fcc‐hcp‐fcc High‐Entropy Alloy Nanomaterials with Tailored Electron Divergence for Selective Ammonia Electrosynthesis

open access: yesAdvanced Materials, EarlyView.
Heterophase fcc‐hcp‐fcc RuFeMMnMo (M═CoNi, Co, and Ni) high‐entropy alloy nanomaterials have been successfully synthesized using a one‐pot approach. The highly random distribution of multiple metal components and the tunable diversity of metal atomic arrangements can be realized simultaneously. By combining metals with different work functions, fcc‐hcp‐
Xiang Meng   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy