Results 131 to 140 of about 76,366 (278)

Accelerated Screening of Halide Double Perovskites via Hybrid Density Functional Theory and Machine Learning for Thermoelectric Energy Conversion

open access: yesAdvanced Energy and Sustainability Research, EarlyView.
This study integrates hybrid density functional theory, Boltzmann transport theory, and machine learning to accelerate the discovery of lead‐free halide double perovskites for thermoelectric energy conversion. By screening 102 compounds, the authors identify high‐performing candidates such as Rb2GeI6 and Cs2SnBr6, offering a sustainable pathway toward ...
Souraya Goumri‐Said   +2 more
wiley   +1 more source

Exploring Quantum Support Vector Regression for Predicting Hydrogen Storage Capacity of Nanoporous Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
In this study we employed support vector regressor and quantum support vector regressor to predict the hydrogen storage capacity of metal–organic frameworks using structural and physicochemical descriptors. This study presents a comparative analysis of classical support vector regression (SVR) and quantum support vector regression (QSVR) in predicting ...
Chandra Chowdhury
wiley   +1 more source

Machine Learning‐Assisted Second‐Order Perturbation Theory for Chemical Potential Correction Toward Hubbard U Determination

open access: yesAdvanced Intelligent Discovery, EarlyView.
In this work, the Doubao large language model (LLM) is involved in the formula derivation processes for Hubbard U determination regarding the second‐order perturbations of the chemical potential. The core ML tool is optimized for physical domain knowledge, which is not limited to parameter prediction but rather serves as an interactive physical theory ...
Mingzi Sun   +8 more
wiley   +1 more source

Sampling Strategy: An Overlooked Factor Affecting Artificial Intelligence Prediction Accuracy of Peptides’ Physicochemical Properties

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study reveals that sampling strategy (i.e., sampling size and approach) is a foundational prerequisite for building accurate and generalizable AI models in peptide discovery. Reaching a threshold of 7.5% of the total tetrapeptide sequence space was essential to ensure reliable predictions.
Meiru Yan   +3 more
wiley   +1 more source

Interpretability and Representability of Commutative Algebra, Algebraic Topology, and Topological Spectral Theory for Real‐World Data

open access: yesAdvanced Intelligent Discovery, EarlyView.
This article investigates how persistent homology, persistent Laplacians, and persistent commutative algebra reveal complementary geometric, topological, and algebraic invariants or signatures of real‐world data. By analyzing shapes, synthetic complexes, fullerenes, and biomolecules, the article shows how these mathematical frameworks enhance ...
Yiming Ren, Guo‐Wei Wei
wiley   +1 more source

From Droplet to Diagnosis: Spatio‐Temporal Pattern Recognition in Drying Biofluids

open access: yesAdvanced Intelligent Systems, EarlyView.
This article integrates machine learning (ML) with the spatio‐temporal evolution of biofluid droplets to reveal how drying and self‐assembly encode distinctive compositional fingerprints. By leveraging textural features and interpretable ML, it achieves robust classification of blood abnormalities with over 95% accuracy.
Anusuya Pal   +2 more
wiley   +1 more source

Real‐Time and Rapid Dynamic Missile Identification Utilizing a TiOx Memristor Array

open access: yesAdvanced Intelligent Systems, EarlyView.
Real‐time missile target identification is demonstrated using an artificial intelligence model based on step‐weighted long–short‐term memory networks and a TiOx memristor array. The approach classifies five projectile types with enhanced early‐stage prediction through data augmentation and custom training strategies. Achieving 94.4% accuracy, the model
Mingyu Kim, Gwanyeong Park, Gunuk Wang
wiley   +1 more source

Soft Robotic Sim2Real via Conditional Flow Matching

open access: yesAdvanced Intelligent Systems, EarlyView.
A new framework based on conditional flow matching addresses the persistent Sim2Real gap in soft robotics. By learning a conditional probability path, the model directly transforms inaccurate simulation data to match physical reality, successfully capturing complex phenomena like hysteresis.
Ge Shi   +6 more
wiley   +1 more source

Robust Dysarthric Speech Recognition with GAN Enhancement and LLM Correction

open access: yesAdvanced Intelligent Systems, EarlyView.
This study tackles dysarthric speech recognition by combining generative adversarial network (GAN)‐generated synthetic data with large language model (LLM)‐based error correction. The approach integrates three key elements: an improved CycleGAN to generate synthetic dysarthric speech for data augmentation, a multimodal automatic speech recognition core
Yibo He   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy