Results 121 to 130 of about 32,394 (308)

Polymer solar cells

open access: yesPolimery, 2011
Marcin Palewicz, Agnieszka Iwan
openaire   +1 more source

Harmonizing the Pyrene and Ether Groups in Covalent Triazine Polymers for Highly Effective H2O2 Photosynthesis via One‐Step Two‐Electron Oxygen Reduction

open access: yesAdvanced Functional Materials, EarlyView.
The pyrene and ether groups are incorporated into the covalent triazine polymer (CTP) structure. The synergistic effect of the two functional groups endows CTP with better electron transfer, light absorption, and oxygen activation properties. An impressive apparent quantum yield (13.2% @420 nm) and a remarkable solar‐to‐chemical conversion efficiency ...
Chong Wang   +10 more
wiley   +1 more source

Efficient, Thermally Stable, and Mechanically Robust All‐Polymer Solar Cells Consisting of the Same Benzodithiophene Unit‐Based Polymer Acceptor and Donor with High Molecular Compatibility [PDF]

open access: bronze, 2020
Jin‐Woo Lee   +10 more
openalex   +1 more source

Spatially Resolved Click Patterning of Dyes on Graphene for 2D Hybrids with Regiotunable Fluorescence

open access: yesAdvanced Functional Materials, EarlyView.
Well‐structured graphene hybrid architectures featuring spatially resolved fluorescent properties represent a promising but so‐far elusive synthetic target. A robust and straightforward method for fabricating well‐organized graphene‐dye hybrid nanoassemblies through a combination of reductive patterning and conventional click chemistry is presented ...
Sabrin Al‐Fogra   +12 more
wiley   +1 more source

Full‐Spectrum Solar Harvesting and Desalination Enabled by Supra‐Nano Amorphous Ruthenium Dioxide – Mineral Composites

open access: yesAdvanced Functional Materials, EarlyView.
A mineral‐based supra‐nano amorphous ruthenium dioxide composite (a‐Ru0.5‐AM) was designed, achieving 97% broadband solar absorption. Under one sun, it reaches 87.91 ± 0.32 °C with a distinct thermal buffering effect that favors thermal confinement.
Yunchen Long   +13 more
wiley   +1 more source

Reducing Open‐Circuit Voltage Losses in Wide‐Bandgap FAPbBr3 Perovskite Solar Cells for Continuous Unassisted Light‐Driven Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
The combination of formamidinium thiocyanate and 1,3‐propane diammonium iodide for bulk and top‐surface passivation, and a ternary fullerene blend to improve energy band alignment, suppresses energy losses in wide‐bandgap FAPbBr3 perovskite solar cells.
Laura Bellini   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy