Results 261 to 266 of about 1,209,011 (266)
Ultrathin, flexible neural probes are developed with an innovative, biomimetic design incorporating brain tissue‐compatible materials. The material system employs biomolecule‐based encapsulation agents to mitigate inflammatory responses, as demonstrated through comprehensive in vitro and in vivo studies.
Jeonghwa Jeong+7 more
wiley +1 more source
A metastable high‐vacancy concentration layered P3‐type Na0.5Cr0.5Ti0.5O2 negative electrode material has been synthesized from its K analogues P3‐type K0.5Cr0.5Ti0.5O2 using a facile room temperature ion‐exchange method. The P3‐type Na0.5Cr0.5Ti0.5O2 demonstrates a gravimetric capacity of 125 mA h g−1 and high‐rate performance (80% charging in 3 min ...
Alok K. Pandey+6 more
wiley +1 more source
Wearable Haptic Feedback Interfaces for Augmenting Human Touch
The wearable haptic feedback interfaces enhance user experience in gaming, social media, biomedical instrumentation, and robotics by generating tactile sensations. This review discusses and categorizes current haptic feedback interfaces into force, thermal, and electrotactile stimulation‐based haptic feedback interfaces, elucidating their current ...
Shubham Patel+3 more
wiley +1 more source
Universal Superconductivity in FeTe and All‐Iron‐Based Ferromagnetic Superconductor Heterostructures
The first all‐iron‐based ferromagnetic superconductor heterostructures with high‐temperature superconductivity and strong ferromagnetism aredemonstrated. From this, it is discovered that FeTe becomes universallysuperconducting with a minute level of cationic impurities through doping ordiffusion from neighboring layers, suggesting its ground state can ...
Hee Taek Yi+12 more
wiley +1 more source
Cellulosic emulsions as multi‐cargo agriculture formulations. Pickering emulsions stabilized by cellulose acetate particles provide an effective platform for delivering a range of agricultural cargoes, including plant growth‐promoting bacteria and agrochemicals.
Mariam Sohail+10 more
wiley +1 more source
This study presents a novel approach to designing and fabricating high‐porosity 3D‐printed scaffolds using a customized resin. Scaffold geometry, cellular interactions, and mechanical properties are analyzed to demonstrate these engineered bone models.
Sera Choi+6 more
wiley +1 more source