Results 301 to 310 of about 1,750,438 (373)

Piezoelectric Origami Metamaterials for Enhanced Handwriting Recognition and Trajectory Tracking

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces origami metamaterials inspired by Kresling piezoelectric generators to enhance biometric authentication and handwriting trajectory recognition. Overcoming sensor limitations in conventional devices, the design enables multichannel data acquisition with fewer sensors, utilizing machine learning to accurately identify content ...
Yinzhi Jin, Ting Tan, Zhimiao Yan
wiley   +1 more source

Monitoring wheelchair propulsion patterns: feasibility and validity of using wearable sensors. [PDF]

open access: yesJ Neuroeng Rehabil
Fathian R   +4 more
europepmc   +1 more source

Macrophage Phenotype Detection Methodology on Textured Surfaces via Nuclear Morphology Using Machine Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
A novel machine learning approach classifies macrophage phenotypes with up to 98% accuracy using only nuclear morphology from DAPI‐stained images. Bypassing traditional surface markers, the method proves robust even on complex textured biomaterial surfaces. It offers a simpler, faster alternative for studying macrophage behavior in various experimental
Oleh Mezhenskyi   +5 more
wiley   +1 more source

Factorization Machine‐Based Active Learning for Functional Materials Design with Optimal Initial Data

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work investigates the optimal initial data size for surrogate‐based active learning in functional material optimization. Using factorization machine (FM)‐based quadratic unconstrained binary optimization (QUBO) surrogates and averaged piecewise linear regression, we show that adequate initial data accelerates convergence, enhances efficiency, and ...
Seongmin Kim, In‐Saeng Suh
wiley   +1 more source

Comparison of DeePMD, MTP, GAP, ACE and MACE Machine‐Learned Potentials for Radiation‐Damage Simulations: A User Perspective

open access: yesAdvanced Intelligent Discovery, EarlyView.
The authors evaluated six machine‐learned interatomic potentials for simulating threshold displacement energies and tritium diffusion in LiAlO2 essential for tritium production. Trained on the same density functional theory data and benchmarked against traditional models for accuracy, stability, displacement energies, and cost, Moment Tensor Potential ...
Ankit Roy   +8 more
wiley   +1 more source

Gaussian Process Regression–Neural Network Hybrid with Optimized Redundant Coordinates: A New Simple Yet Potent Tool for Scientist's Machine Learning Toolbox

open access: yesAdvanced Intelligent Discovery, EarlyView.
A machine learning method, opt‐GPRNN, is presented that combines the advantages of neural networks and kernel regressions. It is based on additive GPR in optimized redundant coordinates and allows building a representation of the target with a small number of terms while avoiding overfitting when the number of terms is larger than optimal.
Sergei Manzhos, Manabu Ihara
wiley   +1 more source

Home - About - Disclaimer - Privacy