Results 101 to 110 of about 3,709,601 (369)
On the Complexity of Random Quantum Computations and the Jones Polynomial [PDF]
There is a natural relationship between Jones polynomials and quantum computation. We use this relationship to show that the complexity of evaluating relative-error approximations of Jones polynomials can be used to bound the classical complexity of ...
Bremner, Michael J., Mann, Ryan L.
core +2 more sources
On some constants in simultaneous approximation
Pointwise estimates for the error which is feasible in simultaneous approximation of a function and its derivatives by an algebraic polynomial were originally pursued from theoretical motivations, which did not immediately require the estimation of the ...
K. Balázs, T. Kilgore
doaj +1 more source
This study introduces an innovative approach to treating intervertebral disc degeneration using ultrasound‐triggered in situ hydrogel formation. Proof‐of‐concept experiments using optimized biomaterial and ultrasound parameters demonstrate partial restoration of biomechanical function and successful integration into degenerated disc tissue, offering a ...
Veerle A. Brans +11 more
wiley +1 more source
On the degree of the polynomial defining a planar algebraic curves of constant width
In this paper, we consider a family of closed planar algebraic curves $\mathcal{C}$ which are given in parametrization form via a trigonometric polynomial $p$.
Bardet, Magali, Bayen, Térence
core +1 more source
Let $A(\theta)$ non-constant and $B_j(\theta)$ for $j=0,1,2,3$ be real trigonometric polynomials of degree at most $\eta \ge 1$ in the variable x. Then the real equivariant trigonometric polynomial Abel differential equations $A(\theta) y' =B_1(\theta)
Claudia Valls
doaj
Generalized Chebyshev Polynomials
Let h(x) be a non constant polynomial with rational coefficients. Our aim is to introduce the h(x)-Chebyshev polynomials of the first and second kind Tn and Un. We show that they are in a ℚ-vectorial subspace En(x) of ℚ[x] of dimension n.
Abchiche Mourad, Belbachir Hacéne
doaj +1 more source
Projection constants for spaces of Dirichlet polynomials [PDF]
Andreas Defant +4 more
openalex +1 more source
Asymptotic Hilbert polynomial and a bound for Waldschmidt constants
In the paper we give an upper bound for the Waldschmidt constants of the wide class of ideals. This generalizes the result obtained by Dumnicki, Harbourne, Szemberg and Tutaj-Gasinska, Adv. Math. 2014. Our bound is given by a root of a suitable derivative of a certain polynomial associated with the asymptotic Hilbert polynomial.
Dumnicki, Marcin +2 more
openaire +5 more sources
Computational Modeling of Reticular Materials: The Past, the Present, and the Future
Reticular materials are advanced materials with applications in emerging technologies. A thorough understanding of material properties at operating conditions is critical to accelerate the deployment at an industrial scale. Herein, the status of computational modeling of reticular materials is reviewed, supplemented with topical examples highlighting ...
Wim Temmerman +3 more
wiley +1 more source
A Polynomial Optimization Approach to Constant Rebalanced Portfolio Selection [PDF]
We address the multi-period portfolio optimization problem with the constant rebalancing strategy. This problem is formulated as a polynomial optimization problem (POP) by using a mean-variance criterion.
Sotirov, R., Takano, Y.
core +1 more source

