Results 251 to 260 of about 479,719 (386)

Ultra‐Thin Soft Pneumatic Actuation for Minimally Invasive Neural Interfacing

open access: yesAdvanced Materials Technologies, EarlyView.
Parylene C is a common polymer in bioelectronics, favored for its biological and chemical inertness. However, this makes bonding layers of Parylene C together very challenging. Here it is a laser to selectively weld layers of Parylene C to create high‐pressure fluidic actuation devices.
Lawrence Coles   +4 more
wiley   +1 more source

Recyclable and Binder‐Free EGaIn–Carbon Liquid Metal Composite: A Sustainable Approach for High‐Performance Stretchable Electronics, Thermal‐Interfacing and EMI‐Shielding

open access: yesAdvanced Materials Technologies, EarlyView.
Binder‐free EGaIn–CB composite deliver printable, recyclable liquid‐metal conductors without sintering or polymer binders. Only 1.5 wt% CB yields shear‐thinning, high‐viscosity rheology, ∼60% bulk EGaIn conductivity, robust stretchability, high thermal conductivity, and strong EMI shielding (35 → 70 dB at 100% strain).
Elahe Parvini   +4 more
wiley   +1 more source

Non‐Invasive Multidimensional Capacitive Sensing for In Vivo Traumatic Brain Injury Monitoring

open access: yesAdvanced Materials Technologies, EarlyView.
Single‐electrode, multidimensional capacitive sensors noninvasively assess cerebral autoregulation and compliance for traumatic brain injury monitoring. ABSTRACT Traumatic brain injury (TBI) is a major cause of death and disability, but invasive intracranial pressure (ICP) monitoring is risky, and current non‐invasive methods lack the resolution and ...
Shawn Kim   +8 more
wiley   +1 more source

Efficient Alcoholysis of Waste Rigid Polyurethane Foam Using Mil-101(Fe) Catalyst

open access: green
Lijun Xu   +11 more
openalex   +1 more source

Hydrogel‐Based Functional Materials: Classifications, Properties, and Applications

open access: yesAdvanced Materials Technologies, EarlyView.
Conductive hydrogels have emerged as promising materials for smart wearable devices due to their outstanding flexibility, multifunctionality, and biocompatibility. This review systematically summarizes recent progress in their design strategies, focusing on monomer systems and conductive components, and highlights key multifunctional properties such as
Zeyu Zhang, Zao Cheng, Patrizio Raffa
wiley   +1 more source

Home - About - Disclaimer - Privacy