Results 11 to 20 of about 3,201,741 (356)

A fractional porous medium equation [PDF]

open access: yesAdvances in Mathematics, 2010
We develop a theory of existence, uniqueness and regularity for a porous medium equation with fractional diffusion, $\frac{\partial u}{\partial t} + (-\Delta)^{1/2} (|u|^{m-1}u)=0$ in $\mathbb{R}^N$, with $m>m_*=(N-1)/N$, $N\ge1$ and $f\in L^1(\mathbb{R}^
de Pablo, Arturo   +3 more
core   +4 more sources

Mechanisms of dispersion in a porous medium [PDF]

open access: yesJournal of Fluid Mechanics, 2017
This paper studies the mechanisms of dispersion in the laminar flow through the pore space of a three-dimensional porous medium. We focus on preasymptotic transport prior to the asymptotic hydrodynamic dispersion regime, in which solute motion may be ...
M. Dentz, Matteo Icardi, J. Hidalgo
semanticscholar   +7 more sources

Porous medium equation with nonlocal pressure [PDF]

open access: yes, 2018
We provide a rather complete description of the results obtained so far on the nonlinear diffusion equation $u_t=\nabla\cdot (u^{m-1}\nabla (-\Delta)^{-s}u)$, which describes a flow through a porous medium driven by a nonlocal pressure.
A. K. Head   +38 more
core   +2 more sources

System of porous medium equations [PDF]

open access: yesJournal of Differential Equations, 2018
We investigate the evolution of population density vector, $\bold{u}=\left(u^1,\cdots,u^k\right)$, of $k$-species whose diffusion is controlled by its absolute value $\left|\bold{u}\right|$. More precisely we study the properties and asymptotic large time behaviour of solution $\bold{u}=\left(u^1,\cdots,u^k\right)$ of degenerate parabolic system \begin{
Sunghoon Kim, Ki-ahm Lee
semanticscholar   +5 more sources

Dynamics of osmosis in a porous medium [PDF]

open access: yesRoyal Society Open Science, 2014
We derive from kinetic theory, fluid mechanics and thermodynamics the minimal continuum-level equations governing the flow of a binary, non-electrolytic mixture in an isotropic porous medium with osmotic effects. For dilute mixtures, these equations are linear and in this limit provide a theoretical basis for the widely used semi-empirical
Silvana S. S. Cardoso   +1 more
openaire   +7 more sources

Pushing Droplet Through a Porous Medium. [PDF]

open access: yesTransp Porous Media, 2022
AbstractI use a mechanical model of a soft body to study the dynamics of an individual fluid droplet in a random, non-wettable porous medium. The model of droplet relies on the spring–mass system with pressure. I run hundreds of independent simulations. I average droplets trajectories and calculate the averaged tortuosity of the porous domain.
Matyka M.
europepmc   +5 more sources

Modeling Immiscible Fluid Displacement in a Porous Medium Using Lattice Boltzmann Method

open access: yesFluids, 2021
The numerical investigation of the interpenetrating flow dynamics of a gas injected into a homogeneous porous media saturated with liquid is presented.
Magzhan Atykhan   +3 more
doaj   +1 more source

Salt crystallisation at the surface of a heterogeneous porous medium [PDF]

open access: yes, 2012
Evaporation of saline solutions from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but only at some ...
Marcoux, Manuel   +2 more
core   +2 more sources

Two-Dimensional Numerical Study of Methane-Air Combustion Within Catalytic and Non-catalytic Porous Medium

open access: yesFrontiers in Chemistry, 2020
This study numerically investigates a two-dimensional physical model of methane/air mixture combustion in catalytic and non-catalytic porous media.
H. B. Gao   +4 more
doaj   +1 more source

Development of a high performance flexible porous burner (FPMB) with an adjustable cooling effect

open access: yesTheoretical and Applied Mechanics Letters, 2017
A high performance flexible porous medium burner that can burn gaseous and liquid fuel with different type of flames (premixed and non-premixed) is proposed.
S. Juntron, S. Jugjai
doaj   +1 more source

Home - About - Disclaimer - Privacy