Separability for mixed states with operator Schmidt rank two [PDF]
The operator Schmidt rank is the minimum number of terms required to express a state as a sum of elementary tensor factors. Here we provide a new proof of the fact that any bipartite mixed state with operator Schmidt rank two is separable, and can be ...
Gemma De las Cuevas +2 more
doaj +1 more source
On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings [PDF]
We investigate structural properties of the completely positive semidefinite cone $\mathcal{CS}_+^n$, consisting of all the $n \times n$ symmetric matrices that admit a Gram representation by positive semidefinite matrices of any size. This cone has been
Burgdorf, Sabine +2 more
core +5 more sources
Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone [PDF]
We investigate the completely positive semidefinite cone $\mathcal{CS}_+^n$, a new matrix cone consisting of all $n\times n$ matrices that admit a Gram representation by positive semidefinite matrices (of any size).
Laurent, Monique, Piovesan, Teresa
core +3 more sources
An elementary proof of Chollet’s permanent conjecture for 4 × 4 real matrices
A proof of the statement per(A ∘ B) ≤ per(A)per(B) is given for 4 × 4 positive semidefinite real matrices. The proof uses only elementary linear algebra and a rather lengthy series of simple inequalities.
Hutchinson George
doaj +1 more source
Trace inequalities for positive semidefinite matrices
Certain trace inequalities for positive definite matrices are generalized for positive semidefinite matrices using the notion of the group generalized inverse.
Choudhury Projesh Nath, Sivakumar K.C.
doaj +1 more source
Analysis of Fixing Nodes Used in Generalized Inverse Computation
In various fields of numerical mathematics, there arises the need to compute a generalized inverse of a symmetric positive semidefinite matrix, for example in the solution of contact problems.
Pavla Hruskova
doaj +1 more source
Positive Semidefinite Matrices, Exponential Convexity for Majorization, and Related Cauchy Means
We prove positive semidefiniteness of matrices generated by differences deduced from majorization-type results which implies exponential convexity and log-convexity of these differences and also obtain Lyapunov's and Dresher's inequalities for these ...
Latif N, Pečarić J, Anwar M
doaj +2 more sources
A New Algorithm for Positive Semidefinite Matrix Completion
Positive semidefinite matrix completion (PSDMC) aims to recover positive semidefinite and low-rank matrices from a subset of entries of a matrix. It is widely applicable in many fields, such as statistic analysis and system control.
Fangfang Xu, Peng Pan
doaj +1 more source
Poisson Quantum Information [PDF]
By taking a Poisson limit for a sequence of rare quantum objects, I derive simple formulas for the Uhlmann fidelity, the quantum Chernoff quantity, the relative entropy, and the Helstrom information.
Mankei Tsang
doaj +1 more source
Semidefinite descriptions of the convex hull of rotation matrices [PDF]
We study the convex hull of $SO(n)$, thought of as the set of $n\times n$ orthogonal matrices with unit determinant, from the point of view of semidefinite programming. We show that the convex hull of $SO(n)$ is doubly spectrahedral, i.e. both it and its
Parrilo, Pablo A. +2 more
core +1 more source

