Results 311 to 320 of about 15,510,861 (365)

Concentration of positive solutions for a class of fractional p-Kirchhoff type equations

Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2020
We study the existence and concentration of positive solutions for the following class of fractional p-Kirchhoff type problems: $$ \left\{\begin{array}{@{}ll} \left(\varepsilon^{sp}a+\varepsilon^{2sp-3}b \,[u]_{s, p}^{p}\right)(-\Delta)_{p}^{s}u+V(x)u^{p-
V. Ambrosio   +2 more
semanticscholar   +1 more source

Positive solutions of nonlinear elliptic equations involving critical sobolev exponents

, 1983
Soit Ω un domaine borne dans R n avec n≥3. On etudie l'existence d'une fonction u satisfaisant l'equation elliptique non lineaire -Δu=u P +f(x,u) sur Ω, u>0 sur Ω, u=0 sur ∂Ω, ou p=(n+2)/(n−2), f(x,0)=0 et f(x,u) est une perturbation de u P de bas ordre ...
H. Brezis, L. Nirenberg
semanticscholar   +1 more source

Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method

Calculus of Variations and Partial Differential Equations, 2019
In this article we are concerned with the following logarithmic Schrödinger equation -ϵ2Δu+V(x)u=ulogu2,inRN,u∈H1(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy ...
C. O. Alves, Chao Ji
semanticscholar   +1 more source

The positiveness and the uniqueness of a solution

Economics Letters, 1985
Abstract This paper presents a sufficient condition which assures the positiveness and uniqueness of a solution for various economic equations and inequality systems.
Takao Fujimoto, Carmen Herrero
openaire   +2 more sources

Multiple solutions of positively homogeneous equations [PDF]

open access: possibleNonlinear Analysis: Theory, Methods & Applications, 2002
The authors study the existence and multiplicity of periodic solutions to the following system \[ u''- Au + \mu u^+ - \nu u^- = v + h(t), \] where \(h\) is a continuous and \(T\)-periodic function, \(v\in \mathbb{R}^N\), and \(A\) is a symmetric matrix. The main results are the following: (1) Under some reasonable assumptions, this system has at least \
FONDA, ALESSANDRO, TORRES P.
openaire   +3 more sources

Home - About - Disclaimer - Privacy