Results 191 to 200 of about 4,377,662 (319)
The Politics of (Post) Truth - Journalism and (Post) Truth
The Politics of (Post) Truth conference brings together academics, politicians, media practitioners, and members of the public in two days of collaborative exchange. It aims to revisit the prevailing understanding of what has popularly been labelled ‘post-truth’ politics.
openaire
Long\u27s Truth telling in a post-truth world (book review)
Sweeney, Julie E.
core +1 more source
Multiple Twinning in Nacre and Aragonite
Electron backscatter diffraction map of a cluster of geologic aragonite, exhibiting single, double, and triple twins. The whole cluster is approximately 2 cm wide. Colors indicate crystal orientations, so that pixels where the a‐, b‐, and c‐axis is perpendicular to the image plane are green, red, and blue, respectively.
Connor A. Schmidt +7 more
wiley +1 more source
[Post-truth and scientific evidence in the Trump era]. [PDF]
Gené-Badia J +4 more
europepmc +1 more source
Scientific communication in a post-truth society. [PDF]
Iyengar S, Massey DS.
europepmc +1 more source
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang +7 more
wiley +1 more source
4D Mapping of ZIF Biocomposites for High Protein Loading and Tunable Release Profiles
Systematic four‐dimensional mapping of zeolitic imidazolate framework biocomposites reveals how precursor ratios, total concentration, and washing define crystalline phase, protein loading, and release kinetics. This comprehensive study identifies conditions yielding record loading (∼85%) and precise phase–property correlations.
Michael R. Hafner +12 more
wiley +1 more source
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu +14 more
wiley +1 more source

