Results 171 to 180 of about 1,895,310 (337)

Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase

open access: yesAdvanced Functional Materials, EarlyView.
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint   +6 more
wiley   +1 more source

Single Solid‐State Ion Channels as Potentiometric Nanosensors

open access: yesAdvanced Functional Materials, EarlyView.
Single gold nanopores functionalized with mixed self‐assembled monolayers act as solid‐state ion channels for direct, selective potentiometric sensing of inorganic ions (Ag⁺). The design overcomes key miniaturization barriers of conventional ion‐selective electrodes by combining low resistivity with suppressed loss of active components, enabling robust
Gergely T. Solymosi   +4 more
wiley   +1 more source

DNA‐Templated 2D Heterostructures as Phototriggered Dynamic Nanohybrids: From Releasing Molecular Loads to Controlling Enzyme Biocatalytic Function

open access: yesAdvanced Functional Materials, EarlyView.
DNA strands are employed both as dynamic linkers and nanoscale templates for the integration of Ag2S nanoparticles on MoS2, which in turn imparted photothermal responsiveness; this feature permits the selective cargo (fluorophore, quantum dots or an enzyme) release from the MoS2 surface in response to local heat induced by light irradiation.
Kai Chen   +3 more
wiley   +1 more source

Colloidal Crack Sintering Lithography for Light‐Induced Patterning of Particle Assemblies

open access: yesAdvanced Functional Materials, EarlyView.
Colloidal crack sintering lithography (CCSL) is a microfabrication technique that uses light‐induced photothermal heating to trigger sintering and controlled cracking in polymer colloidal assemblies. Local structural changes generate microchannels and patterns, enabling direct writing of diverse topographic motifs.
Marius Schoettle   +2 more
wiley   +1 more source

The Anisotropic Adsorption of De Novo Allosteric Two‐Component Protein Fibers on Mica Surfaces

open access: yesAdvanced Functional Materials, EarlyView.
In this study, the interfacial behavior of de novo designed proteins that self‐assemble into tubular architectures with distinct morphologies — small (S), large (L), and helical (H) fibers — at the muscovite mica‐water interface is explored using in situ AFM. Abstract Protein adsorption at solid–liquid interfaces underlies many biomedical and materials
Chenyang Shi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy