Positive‐Tone Nanolithography of Antimony Trisulfide with Femtosecond Laser Wet‐Etching
A butyldithiocarbamic acid (BDCA) etchant is used to fabricate various micro‐ and nanoscale structures on amorphous antimony trisulfide (a‐Sb2S3) thin film via femtosecond laser etching. Numerical analysis and experimental results elucidate the patterning mechanism on gold (reflective) and quartz (transmissive) substrates.
Abhrodeep Dey +12 more
wiley +1 more source
Optimized multi agent reinforcement learning algorithms with hybrid BiLSTM for cost efficient EV charging scheduling. [PDF]
Khekare U, Vedaraj I S R.
europepmc +1 more source
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker +5 more
wiley +1 more source
Cyber-resilient machine learning framework for accurate individual load forecasting and anomaly detection in smart grids. [PDF]
Tayseer M +8 more
europepmc +1 more source
Reevaluating the Activity of ZIF‐8 Based FeNCs for Electrochemical Ammonia Production
Though receiving much attention, the field of electrochemical nitrogen reduction reaction (eNRR) to ammonia is marked by doubts about whether this reaction is possible in aqueous media. This work sheds light on this question for iron single‐atom on N‐doped carbon (FeNC) catalysts—a class of well‐known catalysts that is also worth testing for the sister
Caroline Schneider +6 more
wiley +1 more source
Demand forecasting and inventory optimization of distribution equipment: A fusion model based on genetic algorithm and machine learning. [PDF]
Tu Q, Zhang H, Li W, Duan J, Kong C.
europepmc +1 more source
MOFs and COFs in Electronics: Bridging the Gap between Intrinsic Properties and Measured Performance
Metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs) hold promise for advanced electronics. However, discrepancies in reported electrical conductivities highlight the importance of measurement methodologies. This review explores intrinsic charge transport mechanisms and extrinsic factors influencing performance, and critically ...
Jonas F. Pöhls, R. Thomas Weitz
wiley +1 more source
Lightweight machine learning framework using temporal features for electric vehicle demand response forecasting on edge devices. [PDF]
Durrani AM +8 more
europepmc +1 more source
Unleashing the Power of Machine Learning in Nanomedicine Formulation Development
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore +7 more
wiley +1 more source
Maximum dispatchable capacity evaluation of a VPP with hybrid wind-solar-gas-storage systems. [PDF]
Zhang C, Li D, Li C.
europepmc +1 more source

