Results 51 to 60 of about 5,510 (299)
Fluorescent probes allow dynamic visualization of phosphoinositides in living cells (left), whereas mass spectrometry provides high‐sensitivity, isomer‐resolved quantitation (right). Their synergistic use captures complementary aspects of lipid signaling. This review illustrates how these approaches reveal the spatiotemporal regulation and quantitative
Hiroaki Kajiho +3 more
wiley +1 more source
The Caenorhabditis elegans DPF‐3 and human DPP4 have tripeptidyl peptidase activity
The dipeptidyl peptidase IV (DPPIV) family comprises serine proteases classically defined by their ability to remove dipeptides from the N‐termini of substrates, a feature that gave the family its name. Here, we report the discovery of a previously unrecognized tripeptidyl peptidase activity in DPPIV family members from two different species.
Aditya Trivedi, Rajani Kanth Gudipati
wiley +1 more source
Molecular bases of circadian magnesium rhythms across eukaryotes
Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...
Helen K. Feord, Gerben van Ooijen
wiley +1 more source
Crosstalk between the ribosome quality control‐associated E3 ubiquitin ligases LTN1 and RNF10
Loss of the E3 ligase LTN1, the ubiquitin‐like modifier UFM1, or the deubiquitinating enzyme UFSP2 disrupts endoplasmic reticulum–ribosome quality control (ER‐RQC), a pathway that removes stalled ribosomes and faulty proteins. This disruption may trigger a compensatory response to ER‐RQC defects, including increased expression of the E3 ligase RNF10 ...
Yuxi Huang +8 more
wiley +1 more source
This perspective highlights emerging insights into how the circadian transcription factor CLOCK:BMAL1 regulates chromatin architecture, cooperates with other transcription factors, and coordinates enhancer dynamics. We propose an updated framework for how circadian transcription factors operate within dynamic and multifactorial chromatin landscapes ...
Xinyu Y. Nie, Jerome S. Menet
wiley +1 more source
Disordered but rhythmic—the role of intrinsic protein disorder in eukaryotic circadian timing
Unstructured domains known as intrinsically disordered regions (IDRs) are present in nearly every part of the eukaryotic core circadian oscillator. IDRs enable many diverse inter‐ and intramolecular interactions that support clock function. IDR conformations are highly tunable by post‐translational modifications and environmental conditions, which ...
Emery T. Usher, Jacqueline F. Pelham
wiley +1 more source
ACCURACY OF SATELLITE OPTICAL OBSERVATIONS AND PRECISE ORBIT DETERMINATION
The monitoring of low-orbit space objects (LEO-objects) is performed in the Astronomical Observatory of Odessa I.I. Mechnikov National University (Ukraine) for many years.
L. Shakun +8 more
doaj +1 more source
Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data [PDF]
KOrea Multi-purpose SATellite (KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position (20 cm) and velocity (0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar (SAR) image processing.
Yoola Hwang +3 more
doaj +1 more source
Protein pyrophosphorylation by inositol pyrophosphates — detection, function, and regulation
Protein pyrophosphorylation is an unusual signaling mechanism that was discovered two decades ago. It can be driven by inositol pyrophosphate messengers and influences various cellular processes. Herein, we summarize the research progress and challenges of this field, covering pathways found to be regulated by this posttranslational modification as ...
Sarah Lampe +3 more
wiley +1 more source
The role of histone modifications in transcription regulation upon DNA damage
This review discusses the critical role of histone modifications in regulating gene expression during the DNA damage response (DDR). By modulating chromatin structure and recruiting repair factors, these post‐translational modifications fine‐tune transcriptional programmes to maintain genomic stability.
Angelina Job Kolady, Siyao Wang
wiley +1 more source

