Results 181 to 190 of about 622,718 (301)

Drug‐Free Thrombolysis Mediated by Physically Activated Micro/Nanoparticles

open access: yesAdvanced Functional Materials, EarlyView.
Overview of particle‐mediated thrombolytic effects (thermal, mechanical, and chemical) and their activating physical stimuli (light, ultrasound, and magnetic field) in drug‐free thrombolysis. ABSTRACT Thrombus‐associated disorders rank among the world's leading causes of death, with ischemic heart disease and stroke as the main contributors.
Pierre Sarfati   +2 more
wiley   +1 more source

The development of a Multidisciplinary e-Care Coordination (MDeCC) prototype to facilitate effective care of pressure injuries. [PDF]

open access: yesBMC Health Serv Res
Al-Moteri M   +14 more
europepmc   +1 more source

Novel Functional Materials via 3D Printing by Vat Photopolymerization

open access: yesAdvanced Functional Materials, EarlyView.
This Perspective systematically analyzes strategies for incorporating functionalities into 3D‐printed materials via Vat Photopolymerization (VP). It explores the spectrum of achievable functionalities in recently reported novel materials—such as conductive, energy‐storing, biodegradable, stimuli‐responsive, self‐healing, shape‐memory, biomaterials, and
Sergey S. Nechausov   +3 more
wiley   +1 more source

The Role of EuroSCORE II in Predicting Postoperative Pressure Injuries in Cardiac Surgery Patients: A Cross-Sectional Study. [PDF]

open access: yesHealthcare (Basel)
Babić D   +5 more
europepmc   +1 more source

MagPiezo: A Magnetogenetic Platform for Remote Activation of Endogenous Piezo1 Channels in Endothelial Cells

open access: yesAdvanced Functional Materials, EarlyView.
MagPiezo enables wireless activation of endogenous Piezo1 channels without genetic modification using 19 nm magnetic nanoparticles and low‐intensity magnetic fields. It generates torque forces at the piconewton scale to trigger mechanotransduction in endothelial cells, standing as a novel platform to interrogate and manipulate Piezo1 activity in vitro.
Susel Del Sol‐Fernández   +7 more
wiley   +1 more source

Laser Engineering of HfN‐Based Nanoparticles for Safe NIR‐I Photothermal and X‐ray Enhancing Cancer Therapies

open access: yesAdvanced Functional Materials, EarlyView.
In this study, we produced HfN‐based nanoparticles via femtosecond laser ablation in acetone. The nanoparticles exhibit a red‐shifted plasmonic resonance in the NIR‐I window, colloidal stability after coating with polyethyleneglycol, and excellent biocompatibility. The photothermal and X‐ray sensitization therapeutic effects were demonstrated for tumor
Julia S. Babkova   +15 more
wiley   +1 more source

Home - About - Disclaimer - Privacy