Results 291 to 300 of about 2,021,702 (360)

Seroprevalence of Dengue Among Healthcare Workers: Assessing Infection Risk and Preventive Strategies in a Tertiary Care Hospital.

open access: gold
Seemab Abid   +6 more
openalex   +2 more sources

Bioengineered Pancreatic Cancer Immunosuppressive Microenvironment Models for Screening Immunotherapies

open access: yesAdvanced Healthcare Materials, EarlyView.
Bioengineering tumor‐stroma pancreatic cancer models with potential to emulate the native immunosuppressive tumor microenvironment. Cancer‐on‐a‐bead models exhibited higher relevance for screening immunotherapies and modulating the protumoral PDAC microenvironment. ABSTRACT Pancreatic cancer is notably resistant to treatment, primarily due to its dense
Maria V. Monteiro   +4 more
wiley   +1 more source

Tunicate‐Inspired Carboxymethyl Cellulose Hydrogel Filler for Treating Age‐Associated Vocal Fold Atrophy

open access: yesAdvanced Healthcare Materials, EarlyView.
The pyrogallol‐conjugated carboxymethylcellulose (CMC‐PG) hydrogel is applicated as a filler for the treatment of presbylaryngis, a vocal fold atrophy. CMC‐PG provides a bulking effect to the vocal folds. CMC‐PG is readily injectable and tissue adhesive, enabling sustained release of growth factor over long period.
Jihoon Jeon   +7 more
wiley   +1 more source

Growth Hormone‐Loaded 3D Printed Silk Fibroin‐Cellulose Dressings for Ischemic Wounds

open access: yesAdvanced Healthcare Materials, EarlyView.
3D‐printed wound dressings combining carboxymethyl cellulose, silk fibroin, and growth hormone accelerate healing in diabetic ulcers. These bioactive, customizable dressings enhance angiogenesis, cellular proliferation, and immune modulation. Proteomic analysis reveals activation of regenerative pathways and reduced fibrosis, highlighting their ...
Maria Pita‐Vilar   +7 more
wiley   +1 more source

A Sacrificial 3D Printed Vessel‐on‐Chip Demonstrates a Versatile Approach to Model Granulation Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
A novel method that combines 3D printing and organ‐on‐chip technology enables the creation of hollow channels lined with endothelial cells through a fibroblast‐populated connective tissue matrix. The model supports stable metabolic culture conditions, angiogenic sprouting, and immune cell migration, thereby demonstrating an easy and versatile method to
Jonas Jäger   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy