Results 181 to 190 of about 410,230 (271)

Advances in Thermoelectric Thin Films Grown by Atomic Layer Deposition: A Critical Review of Performance and Challenges

open access: yesAdvanced Energy Materials, EarlyView.
This review highlights the use of atomic layer deposition (ALD) for fabricating thermoelectric thin films with atomic‐scale control. Four material classes—chalcogenides, doped oxides, ternary oxides, and multilayered structures—are compared in terms of growth dynamics, structure–property relationships, and thermoelectric performance. The precise tuning
Jorge Luis Vazquez‐Arce   +5 more
wiley   +1 more source

From Materials to Systems: Challenges and Solutions for Fast‐Charge/Discharge Na‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
This review systematically analyzes the key characteristics limiting the fast‐charge/discharge capability of Na‐ion batteries (SIBs) from a multi‐scale perspective encompassing electrode materials, the electrode‐electrolyte interface, and the system. Furthermore, it presents practical solution strategies for the fundamental issues arising at each scale,
Bonyoung Ku   +5 more
wiley   +1 more source

Safety of Sodium‐Ion Batteries: Evaluation and Perspective from Component Materials to Cells, Modules, and Packs

open access: yesAdvanced Energy Materials, EarlyView.
This review provides a bottom‐up evaluation of sodium‐ion battery safety, linking material degradation mechanisms, cell engineering parameters, and module/pack assembly. It emphasizes that understanding intrinsic material stability and establishing coordinated engineering control across hierarchical levels are vital for preventing degradation coupling ...
Won‐Gwang Lim   +5 more
wiley   +1 more source

Upscaling Sodium‐Ion Battery Cells: From Aqueous Processing to Performance Assessment of Hard Carbon|Prussian White Pouch Cells

open access: yesAdvanced Energy Materials, EarlyView.
This study investigates the feasibility of scaling up Prussian White (PW)‐based cathode manufacturing at a pilot scale. Through careful PW dehydration combined with optimized aqueous processing, we report the stepwise development of industrially relevant 1 Ah pouch cells and evaluate their performance under various conditions.
Faduma M. Maddar   +7 more
wiley   +1 more source

Bio‐Inspired Cascade Photocatalysis on Fe Single‐Atom Carbon Nitride Upcycles Plastic Wastes for Effective Acetic Acid Production

open access: yesAdvanced Energy Materials, EarlyView.
This work demonstrates a novel cascade photocatalysis concept using Fe single‐atom catalysts (Fe@C3N4 SAC) to directly upcycle plastics (PET, PP, PE, PVC) into valuable acetic acid at ambient conditions. Inspired by microbial degradation, the bifunctional cascade photocatalyst combines Fenton‐like oxidation and CO2 photoreduction, as validated by ...
Wei Wei   +21 more
wiley   +1 more source

Prediction of Structural Stability of Layered Oxide Cathode Materials: Combination of Machine Learning and Ab Initio Thermodynamics

open access: yesAdvanced Energy Materials, EarlyView.
In this work, we developed a phase‐stability predictor by combining machine learning and ab initio thermodynamics approaches, and identified the key factors determining the favorable phase for a given composition. Specifically, a lower TM ionic potential, higher Na content, and higher mixing entropy favor the O3 phase.
Liang‐Ting Wu   +6 more
wiley   +1 more source

Towards Climate Neutrality by 2050: Role of Aluminum for Short‐ and Long‐Term Energy and Hydrogen Storage

open access: yesAdvanced Energy Materials, EarlyView.
The Aluminum energy storage cycle involves the use of renewable energy for Al production and the generation of heat (dry cycle) and heat and H2 (wet cycle) for energy production via Al‐steam combustion. ABSTRACT Reaching climate neutrality by 2050 requires innovative long‐term energy storage (LTES) solutions beyond the current use of fossil fuels ...
Lorenzo Trombetti   +2 more
wiley   +1 more source

Design Matters: How Cell Architecture Shapes the Performance, Cost, and Environmental Impact of Battery Technologies

open access: yesAdvanced Energy Materials, EarlyView.
This study introduces a multidimensional framework integrating electrical performance, cost, and life cycle assessment for 140 real and virtual battery cells. Results show that LFP offers low emissions and costs, sodium‐ion excels in resource efficiency, and pouch housings and higher energy densities effectively reduce environmental burdens.
Nicolas Peter Kaiser   +7 more
wiley   +1 more source

Accelerating the Development of Organic Solar Cells: A Standardized Protocol with Machine Learning Integration

open access: yesAdvanced Energy Materials, EarlyView.
This publication introduces a streamlined method for evaluating new organic solar cell materials, focusing on layer thickness and efficiency optimization—enhanced by machine‐learning‐driven UV–vis spectral deconvolution. It outlines a degradation testing protocol, emphasizing half‐cell vs. full‐cell comparisons and environmental stress factors. Finally,
Jonas Wortmann   +8 more
wiley   +1 more source

Stage‐Specific Roles of Deep Eutectic Solvents in Recycling of Spent Lithium‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
Deep eutectic solvents (DESs) offer tunable acidity, redox, and coordination properties for selective recycling of spent lithium‐ion battery cathodes. Through co‐dissolution, single‐ and two‐metal separations, DESs enable sustainable recovery of critical metals for closed‐loop regeneration of battery‐grade materials, advancing a circular economy for ...
Jingxiu Wang   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy