Results 1 to 10 of about 10 (10)
This paper is devoted to investigating the boundedness, continuity and compactness for variation operators of singular integrals and their commutators on Morrey spaces and Besov spaces.
Zhang Xiao, Liu Feng, Zhang Huiyun
doaj +1 more source
In this article, we develop a new set of results based on a non-local gradient jointly inspired by the Riesz ss-fractional gradient and peridynamics, in the sense that its integration domain depends on a ball of radius δ>0\delta \gt 0 (horizon of ...
Bellido José Carlos +2 more
doaj +1 more source
In this article, we study the generalized parabolic parametric Marcinkiewicz integral operators ℳΩ,h,Φ,λ(r){ {\mathcal M} }_{{\Omega },h,{\Phi },\lambda }^{(r)} related to polynomial compound curves.
Ali Mohammed, Katatbeh Qutaibeh
doaj +1 more source
Let (𝒳, d, μ) be a space of homogeneous type, in the sense of Coifman and Weiss, with the upper dimension ω. Assume that η ∈(0, 1) is the smoothness index of the wavelets on 𝒳 constructed by Auscher and Hytönen.
Zhou Xilin, He Ziyi, Yang Dachun
doaj +1 more source
In this paper, we study the boundedness of commutator [b, T] of Riesz transform associated with Schrödinger operator and b is BMO type function, note that the kernel of T has no smoothness, and the boundedness from Hb1(Rn)→L1(Rn) is obtained.
Canqin Tang +2 more
wiley +1 more source
Recently V. Kokilashvili, N. Samko, and S. Samko have proved a sufficient condition for the boundedness of the Cauchy singular integral operator on variable Lebesgue spaces with radial oscillating weights over Carleson curves. This condition is formulated in terms of Matuszewska‐Orlicz indices of weights. We prove a partial converse of their result.
Alexei Yu. Karlovich, Lech Maligranda
wiley +1 more source
Lp estimates for maximal functions along surfaces of revolution on product spaces
This paper is concerned with establishing Lp estimates for a class of maximal operators associated to surfaces of revolution with kernels in Lq(Sn−1 × Sm−1), q > 1.
Ali Mohammed, Reyyashi Musa
doaj +1 more source
Two‐weight norm inequalities for the rough fractional integrals
The authors give the weighted (Lp, Lq)‐boundedness of the rough fractional integral operator TΩ,α and the fractional maximal operator MΩ,α with two different weight functions.
Yong Ding, Chin-Cheng Lin
wiley +1 more source
A commutator theorem for fractional integrals in spaces of homogeneous type
We give a new proof of a commutator theorem for fractional integrals in spaces of homogeneous type.
Jorge J. Betancor
wiley +1 more source
On the L p-boundedness of Calderón-Zygmund operators
The main result in this paper is that, for singular integral operators associated with standard kernels, local L 1-estimates imply global L p-estimates for every p ∈ (1, ∞).
Mitrea Dorina, Mitrea Marius
doaj +1 more source

