Results 231 to 240 of about 316,557 (297)

Artificial Intelligence for Bone: Theory, Methods, and Applications

open access: yesAdvanced Intelligent Discovery, EarlyView.
Advances in artificial intelligence (AI) offer the potential to improve bone research. The current review explores the contributions of AI to pathological study, biomarker discovery, drug design, and clinical diagnosis and prognosis of bone diseases. We envision that AI‐driven methodologies will enable identifying novel targets for drugs discovery. The
Dongfeng Yuan   +3 more
wiley   +1 more source

Early Privatizations

open access: yes, 2019
Adam, C, Cavendish, W
openaire   +2 more sources

Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook

open access: yesAdvanced Intelligent Discovery, EarlyView.
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang   +4 more
wiley   +1 more source

Accelerating Primary Screening of USP8 Inhibitors from Drug Repurposing Databases with Tree‐Based Machine Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces a tree‐based machine learning approach to accelerate USP8 inhibitor discovery. The best‐performing model identified 100 high‐confidence repurposable compounds, half already approved or in clinical trials, and uncovered novel scaffolds not previously studied. These findings offer a solid foundation for rapid experimental follow‐up,
Yik Kwong Ng   +4 more
wiley   +1 more source

Why water security matters to cities under extreme heat in the Global North. [PDF]

open access: yesNPJ Urban Sustain
March H   +4 more
europepmc   +1 more source

A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley   +1 more source

Home - About - Disclaimer - Privacy