Results 121 to 130 of about 224,550 (312)
Emerging Memory and Device Technologies for Hardware‐Accelerated Model Training and Inference
This review investigates the suitability of various emerging memory technologies as compute‐in‐memory hardware for artificial intelligence (AI) applications. Distinct requirements for training‐ and inference‐centric computing are discussed, spanning device physics, materials, and system integration.
Yoonho Cho +6 more
wiley +1 more source
Foreign labor, peer‐networking and agricultural efficiency in the Italian dairy sector
Abstract While the presence of immigrants in the agricultural sector is widely acknowledged, the empirical evidence on its economic consequences is lacking, especially from a microeconomic perspective. Using the Farm Accountancy Data Network panel data for Italian dairy farms in the period 2008–2018, the present study investigates the relationship ...
Federico Antonioli +2 more
wiley +1 more source
Designing Memristive Materials for Artificial Dynamic Intelligence
Key characteristics required of memristors for realizing next‐generation computing, along with modeling approaches employed to analyze their underlying mechanisms. These modeling techniques span from the atomic scale to the array scale and cover temporal scales ranging from picoseconds to microseconds. Hardware architectures inspired by neural networks
Youngmin Kim, Ho Won Jang
wiley +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova +4 more
wiley +1 more source
It is a fact that slippage causes tracking errors in both longitudinal and lateral directions which results to have less travel distance in tracking a reference trajectory. Less travel distance means having energy loss of the battery and carrying loads less than planned.
Gokhan Bayar +2 more
wiley +1 more source
This article describes a multimodal fusion data acquisition and processing system about electromyography for dynamic movement recognition and bioelectrical impedance for key posture recognition. In addition, a new dynamic–static fusion algorithm strategy is designed.
Chenhao Cao +5 more
wiley +1 more source
A semantics for Hybrid Probabilistic Logic programs with function symbols
Damiano Azzolini +2 more
openalex +2 more sources
The systematic design of memristor‐based neural network is provided by analog conductance state parameters to accurately emulate the software‐based high‐resolution weight at discrete device level. The requirement of discrete analog conductance of memristor device is measured as ≈50 states with nonlinearity value of ≈0.142 within the deviation range of ...
Jingon Jang, Yoonseok Song, Sungjun Park
wiley +1 more source

