Results 101 to 110 of about 259,656 (266)

Thermal Phase‐Modulation of Thickness‐Dependent CVD‐Grown 2D In2Se3

open access: yesAdvanced Functional Materials, EarlyView.
A comprehensive study of CVD‐grown 2D In2Se3 reveals a distinct thickness‐dependent phase landscape and a reversible, thermally driven transformation between β″ and β* variants. In situ TEM electron diffraction and Raman spectroscopy reveal structural dynamics, while the structural invariance of the α‐phase in ultrathin regimes highlights its stability—
Dasun P. W. Guruge   +6 more
wiley   +1 more source

pH‐Tunable Material Properties of Glycine‐Rich Condensates from Tick Bioadhesive

open access: yesAdvanced Functional Materials, EarlyView.
This work studies the influence of pH on the phase separation behavior of a disordered glycine‐rich protein found in tick bioadhesive. The results show profound impact on the propensity of coacervation, condensate microstructure and viscosity, amphiphilicity of the peptides, and effective encapsulation of therapeutic molecules.
Manali Nandy   +5 more
wiley   +1 more source

Multifunctional Microstructured Surfaces by Microcontact Printing of Reactive Microgels

open access: yesAdvanced Functional Materials, EarlyView.
Reactive poly(N‐vinylcaprolactam‐co‐glycidyl methacrylate) microgels are used as functional inks to create surface‐grafted arrays on glass via microcontact printing. The patterns (10–50 µm widths and spacings) enable stable binding and post‐functionalization with dyes and peptides.
Inga Litzen   +4 more
wiley   +1 more source

High‐Spatiotemporal‐Resolution Transparent Thermoelectric Temperature Sensor Arrays Reveal Temperature‐Dependent Windows for Reversible Photothermal Neuromodulation

open access: yesAdvanced Functional Materials, EarlyView.
Thermoelectric temperature sensors are developed that directly measure heat changes during optical‐based neural stimulation with millisecond precision. The sensors reveal the temperature windows for safe reversible neural modulation: 1.4–4.5 °C enables reversible neural inhibition, while temperatures above 6.1 °C cause permanent thermal damage.
Junhee Lee   +9 more
wiley   +1 more source

Exploiting Two‐Photon Lithography, Deposition, and Processing to Realize Complex 3D Magnetic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey   +5 more
wiley   +1 more source

Ultrahigh‐Yield, Multifunctional, and High‐Performance Organic Memory for Seamless In‐Sensor Computing Operation

open access: yesAdvanced Functional Materials, EarlyView.
Molecular engineering of a nonconjugated radical polymer enables a significant enhancement of the glass transition temperature. The amorphous nature and tunability of the polymer, arising from its nonconjugated backbone, facilitates the fabrication of organic memristive devices with an exceptionally high yield (>95%), as well as substantial ...
Daeun Kim   +14 more
wiley   +1 more source

Synergistic Fluorine and Cyanide Co‐Modification to Reinforce Photoinduced Excitons Formation and Transfer for Efficient CO2 Photoreduction

open access: yesAdvanced Functional Materials, EarlyView.
An advanced F‐doped and ─CN group co‐modified FCCN is developed. Due to the synergistic effects of co‐modification in promoting photogenerated exciton generation, enhancing charge kinetics, expanding active interfacial areas, and optimizing CO2 interfacial reactions, the FCCN photocatalyst demonstrates excellent catalytic performance and high ...
Sheng‐Qi Guo   +9 more
wiley   +1 more source

Thickness‐Dependent Skyrmion Evolution in Fe3GeTe2 During Magnetization Reversal

open access: yesAdvanced Functional Materials, EarlyView.
Thickness‐ and field‐dependent magnetic domain behavior in 2D van der Waals Fe3GeTe2 is studied using Lorentz TEM and micromagnetic simulations. A patch‐like domain phase evolves from skyrmions during magnetization reversal, and step edges between thickness regions act as pinning sites.
Jennifer Garland   +9 more
wiley   +1 more source

Insight into the Internal Structure of Biogenic, Synthetic and Geological Apatite by Electron Microscopy and X‐Ray Scattering

open access: yesAdvanced Functional Materials, EarlyView.
Apatite occurs in many forms in nature, e.g. in teeth and geological minerals. Internally, biological apatite contains nanocrystals that are also found in synthetically prepared calcium phosphate nanoparticles which are used in biomedicine, e.g. for gene and drug delivery and for bone regeneration. Abstract Calcium phosphate is the inorganic component (
Kathrin Kostka   +3 more
wiley   +1 more source

Laser‐Based Sculpturing of Embedded Ultrathin Metal‐Oxide Nanopores for Enhanced Biomolecular Sensing

open access: yesAdvanced Functional Materials, EarlyView.
Controlled laser‐drilling of embedded HfO2 membranes creates three layer nanopores with Gaussian‐shaped cavities sculptured in the supporting layers. These embedded solid‐state nanopores slow DNA translocation by 12‐fold compared to SiNx pores, enabling high‐resolution, label‐free detection of short DNAs, RNAs, and proteins.
Jostine Joby   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy