Results 91 to 100 of about 364,908 (245)
Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials
This article explores how machine learning (ML) revolutionizes the study and design of disordered materials by uncovering hidden patterns, predicting properties, and optimizing multiscale structures. It highlights key advancements, including generative models, graph neural networks, and hybrid ML‐physics methods, addressing challenges like data ...
Hamidreza Yazdani Sarvestani+4 more
wiley +1 more source
This study presents rapid evaluation methods for scan strategies in powder bed fusion (PBF) of polymers with a NIR laser as an example for its application. It uses line buffer‐based calculations and point density fields to predict the performance of four different scan strategies. The methods show promising results in laser‐based PBF of polymer samples,
Simon Leupold+9 more
wiley +1 more source
This study presents the development and characterization of injectable nanocomposite hydrogels based on N‐succinyl chitosan, oxidized guar gum, and bacterial cellulose nanofibers. Emphasizing enhanced mechanical properties and biocompatibility, the hydrogels exhibit fast gelation, improved structural integrity, and reduced swelling. Their potential for
Raimundo Nonato Fernandes Moreira Filho+8 more
wiley +1 more source
This study models static recrystallization in interstitial free‐steel using coupled crystal plasticity and phase‐field simulations. The method directly links heterogeneous dislocation density to nucleation site prediction, eliminating reliance on empirical assumptions.
Alireza Rezvani+2 more
wiley +1 more source
Periodic submicron features are fabricated on 304 stainless steel using single and double femtosecond laser pulses. By adjusting polarization, fluence, and inter‐pulse delay, 1D and 2D nanostructures are formed. Enhanced hydrophobicity and dense surface‐enhanced Raman spectroscopy hotspots enable analyte detection down to 10−10 M with good ...
Balaji Baskar+3 more
wiley +1 more source
Stochastic collocation for device-level variability analysis in integrated photonics [PDF]
Bogaerts, Wim+4 more
core +2 more sources
In this research, ZrC coatings are evaluated against various counterprobes at the microscale using novel super‐stiff atomic force microscopy cantilevers. The chemical composition of the coating is shown to be an important factor influencing coating hardness and Young's modulus, while surface roughness, counterprobe hardness, and surface energy are the ...
Piotr Jenczyk+4 more
wiley +1 more source
This study presents a 3D representative volume element‐based simulation approach to predict mesoscopic residual stress and strain fields in silicon solid solution‐strengthened ductile cast iron. By modeling phase transformation kinetics with an enhanced Johnson–Mehl–Avrami–Kolmogorov model, the effects of varying cooling rates on residual stresses are ...
Lutz Horbach+6 more
wiley +1 more source
Residual Stress States in Microstructurally Graded PBF–LB/M Austenitic Steel Components
This study examines microstructurally graded 316L rectangular tube profiles fabricated via PBF–LB/M using a dual‐laser system. A 1 kW top‐hat and a 400 W Gaussian laser create distinct grain sizes and crystallographic texture. Mechanical properties are linked to microstructural evolution driven by processing conditions.
Nico Möller+5 more
wiley +1 more source
Transarterial Chemoembolization (TACE) may aggravate liver fibrosis. In this study, a novel oral targeting nanoemulsion is fabricated to enhance the therapeutic effect of antifibrotic drug‐pirfenidone (PFD) on fibrosis after TACE. Studies have shown that PFD nanoemulsion can enhance the oral liver targeting effect of PFD, and effectively improve the ...
Zhimei Cheng+12 more
wiley +1 more source