Results 171 to 180 of about 2,762,667 (284)

Interfacial Contact Engineering Enables Giant‐Performance Semiconductor Nanomembrane Optoelectronic Devices

open access: yesAdvanced Functional Materials, EarlyView.
This work investigates modifying interfacial contacts in realizing giant‐performance semiconductor nanomembrane optoelectronics. Strategies, including surface reaction and buffer layer work‐function modulation, are explored to boost the Schottky barrier. An emerging material of YbOx is utilized for near‐ideal Ohmic contact.
Yibo Zhang   +5 more
wiley   +1 more source

Vivid Structural Coloration in Transparent MXene‐Cellulose Nanocrystals Composite Films

open access: yesAdvanced Functional Materials, EarlyView.
Vivid structural coloration in reflectance and high transparency in transmittance modes are observed in biopolymer‐layered composite films. The ultrathin multilayered structures have unique optical appearance, near‐infrared bandgap, and strong optical reflection caused by alternating MXene and cellulose nanocrystals layers with high refractive index ...
Botyo Dimitrov   +12 more
wiley   +1 more source

Shape‐Stabilization of Phase Change Materials with Carbon‐Conscious Poly(hydroxy)Urethane Foams

open access: yesAdvanced Functional Materials, EarlyView.
Poly(hydroxy)urethane (PHU) foam, derivable from carbon dioxide (CO2) and bio‐based resources, is a promising material platform for shape‐stabilizing phase change materials (PCMs). We demonstrate the encapsulation of both paraffins and calcium chloride hexahydrate in PHU foam, achieving 48 stable thermal cycles by introducing 5 wt.% barium carbonate ...
Minjung Lee   +5 more
wiley   +1 more source

Advances in Radiative Heat Transfer: Bridging Far‐Field Fundamentals and Emerging Near‐Field Innovations

open access: yesAdvanced Functional Materials, EarlyView.
This review synthesizes the evolution of radiative heat transfer, emphasizing the transition from far‐field to near‐field regimes. Traditional frameworks, such as Planck's law, are revisited alongside modern innovations like fluctuational electrodynamics. Applications span nanoscale thermal management, energy harvesting, and thermophotovoltaic systems.
Ambali Alade Odebowale   +6 more
wiley   +1 more source

Active Thermal Field Integration for Marangoni‐Driven Salt Rejection and Water Collection

open access: yesAdvanced Functional Materials, EarlyView.
A thermal gradient fabric (TGF) evaporator with an auxiliary active thermal field can simultaneously increase evaporation rates and achieve long‐term salt rejection. The auxiliary active thermal field is well integrated with solar energy to construct moderate, extensive, and circulating Marangoni flow for salt rejection.
Can Ge   +12 more
wiley   +1 more source

Making Photoresponsive Metal–Organic Frameworks an Effective Class of Heterogeneous Photocatalyst

open access: yesAdvanced Functional Materials, EarlyView.
This review summarizes photoresponsive MOFs for photocatalytic applications, focusing on their capacity to enhance light harvesting, charge transfer, and surface reactions. While existing studies provide foundational insights, emerging characterization techniques enable a deeper understanding of photoresponsive MOFs.
Rui Liu   +3 more
wiley   +1 more source

Circularly Polarized Perovskite Photodetector with Photocurrent Dissymmetry Factors of up to 1.95 Enabled by Liquid Crystal

open access: yesAdvanced Functional Materials, EarlyView.
Photodetectors made using perovskite single crystals in combination with free‐standing cholesteric liquid crystal (CLC) polymer films exhibit photocurrent dissymmetry factors up to 1.95 for 520 nm circularly polarized light (CPL) excitation. The CPL spectral response of the photodetector is tunable over a broad range of wavelengths by tuning the ...
Yifan Feng   +9 more
wiley   +1 more source

Ultra‐Effective Light‐Activated Antibacterial Activity via Carboxyl Functionalized Graphene Quantum Dots and Films

open access: yesAdvanced Functional Materials, EarlyView.
Carboxyl‐functionalized graphene quantum dots (cGQDs) exhibit high singlet oxygen quantum yield due to strong spin–orbit coupling. cGQDs achieve minimum bactericidal concentration of only 0.4 µg mL−1 against S. aureus under low‐intensity illumination.
Muhammad Hassnain   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy