Results 161 to 170 of about 266,637 (207)

Development and Preliminary In Vivo Study of 3D‐Printed Bioactive Glass Scaffolds with Trabecular Architecture

open access: yesAdvanced Engineering Materials, EarlyView.
This study reports the fabrication of trabecular bioactive glass scaffolds (composition “1d”: 46.1SiO2‐28.7CaO‐8.8MgO‐6.2P2O5‐5.7CaF2‐4.5Na2O wt%) through vat photopolymerization and the relevant results from mechanical testing and in vivo implantation procedures in rabbit femora, showing great promise for bone tissue engineering applications.
Dilshat Tulyaganov   +8 more
wiley   +1 more source

Advancing Research on Biomaterials and Biological Materials with Scanning Electron Microscopy under Environmental and Low Vacuum Conditions

open access: yesAdvanced Engineering Materials, EarlyView.
Herein, environmental scanning electron microscopy (ESEM) is discussed as a powerful extension of conventional SEM for life sciences. By combining high‐resolution imaging with variable pressure and humidity, ESEM allows the analysis of untreated biological materials, supports in situ monitoring of hydration‐driven changes, and advances the functional ...
Jendrian Riedel   +6 more
wiley   +1 more source

Engineering Deformation and Failure in Diamond Triply Periodic Minimal Surface Lattices via 3D Wall‐Thickness Grading

open access: yesAdvanced Engineering Materials, EarlyView.
The work demonstrates that strategic wall‐thickness grading in diamond triply periodic minimal surface lattices enables precise tuning of deformation and failure behavior under compression. Different gradation patterns guide how and where the structure collapses, improving energy absorption or promoting controlled brittle failure.
Giovanni Rizza   +3 more
wiley   +1 more source

3D (Bio) Printing Combined Fiber Fabrication Methods for Tissue Engineering Applications: Possibilities and Limitations

open access: yesAdvanced Functional Materials, EarlyView.
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana   +2 more
wiley   +1 more source

Biodegradable and Recyclable Luminescent Mixed‐Matrix‐Membranes, Hydrogels, and Cryogels based on Nanoscale Metal‐Organic Frameworks and Biopolymers

open access: yesAdvanced Functional Materials, EarlyView.
The study presents biodegradable and recyclable mixed‐matrix membranes (MMMs), hydrogels, and cryogels using luminescent nanoscale metal‐organic frameworks (nMOFs) and biopolymers. These bio‐nMOF‐MMMs combine europium‐based nMOFs as probes for the status of the materials with the biopolymers agar and gelatine and present alternatives to conventional ...
Moritz Maxeiner   +4 more
wiley   +1 more source

Laser‐Induced Graphene from Waste Almond Shells

open access: yesAdvanced Functional Materials, EarlyView.
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova   +9 more
wiley   +1 more source

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy