Results 51 to 60 of about 99 (99)
The MaterialDigital initiative drives the digital transformation of material science by promoting findable, accessible, interoperable, and reusable principles and enhancing data interoperability. This article explores the role of scientific workflows, highlights challenges in their adoption, and introduces the Workflow Store as a key tool for sharing ...
Simon Bekemeier+37 more
wiley +1 more source
PBTTT‐OR‐R, a C14‐alkoxy/alkyl‐PBTTT polymer derivative, is of substantial interest for optoelectronics due to its specific fullerene intercalation behavior and enhanced charge‐transfer absorption. Comparing this polymer with (S) and without (O) homocoupling defects reveals that PBTTT‐OR‐R(O) forms stable co‐crystals with PC61BM, while PBTTT‐OR‐R(S ...
Zhen Liu+14 more
wiley +1 more source
In this study, the interplay of dipolar dynamics and ionic charge transport in MOF compounds is investigated. Synthesizing the novel structure CFA‐25 with integrated freely rotating dipolar groups, local and macroscopic effects, including interactions with Cs cations are explored.
Ralph Freund+6 more
wiley +1 more source
Copper sulfide based electrocatalysts for CO2 conversion are selective for production of formate as major product. Transformations under electrochemical conditions result in significant sulfur loss, and this study examines the nature of how persistent, residual sulfur (observed as surface SO42– species and S dissolved in the electrolyte) can sustain ...
Sasho Stojkovikj+8 more
wiley +1 more source
Wearable Haptic Feedback Interfaces for Augmenting Human Touch
The wearable haptic feedback interfaces enhance user experience in gaming, social media, biomedical instrumentation, and robotics by generating tactile sensations. This review discusses and categorizes current haptic feedback interfaces into force, thermal, and electrotactile stimulation‐based haptic feedback interfaces, elucidating their current ...
Shubham Patel+3 more
wiley +1 more source
Temperature‐Induced Effects on Wet‐Spun Artificial Spider Silk Fibers
Silk‐based materials are valued for their strength and flexibility, but temperature effects on their mechanical properties are understudied. This study examines the properties of artificial silk fibers from −80 to +120 °C. Results show maintained strength at high temperatures and increased strength at low temperatures. Abstract Silk‐based materials are
Gabriele Greco+7 more
wiley +1 more source
Starting from an experimental database, a physically‐based machine learning approach is used to gain new insights into spider silk supercontraction. These insights inspire a microstructure‐based analytical model that quantitatively predicts supercontraction based on protein primary structure properties. New experiments to further elucidate the physical
Vincenzo Fazio+4 more
wiley +1 more source
Inspired by shark skin, which has a hydrophilic “denticle layer” and a low surface energy “mucus layer,” a triple‐defense antifouling coating is developed. This coating features a robust hydrophilic catalytic nanoparticle layer overlaid with dispersed hydrophobic perfluoro‐silane domains, optimizing fouling resistance, release, and degradation for ...
Wenshuai Yang+8 more
wiley +1 more source
Shape‐Reconfigurable Crack‐Based Strain Sensor with Ultrahigh and Tunable Sensitivity
A highly sensitive crack‐based sensor with tunable strain detection capabilities is demonstrated through controlled nanocrack formation in a line‐patterned shape memory polymer substrate. The sensor design integrates thermoplastic polyurethane and poly(lactic acid), enabling thermo‐responsive reconfiguration of crack geometry.
Seungjae Lee+10 more
wiley +1 more source
A novel stratum corneum‐inspired zwitterionic hydrogel is developed for intelligent, flexible sensors, featuring intrinsic water retention and anti‐freezing properties. The quasi‐gel, composed of hygroscopic polymers and bound water, maintains its softness across a wide range of humidity.
Meng Wu+8 more
wiley +1 more source